期刊文献+

四种智能算法的比较研究 被引量:10

Research on the Comparision of Four Intelligent Algorithm
下载PDF
导出
摘要 随着智能算法的研究深入,一些新的智能优化算法不断被提出,包括从遗传算法、蚁群算法、粒子群算法、人工鱼群算法等。这些算法都是从自然界的自然生物的特性启发而研究出来的,由于这些算法在求解时不依赖于梯度信息,因而特别适用于传统方法解决不了的大规模复杂问题。通过这些算法的介绍和分析,并通过测试函数测试了四种算法的收敛性、收敛速度和精度,评价了这些智能算法在求解函数优化问题的能力。最后对优化算法今后的发展方向进行了评述与展望。 with the development of researches,many new intelligent algorithms are created such as genetic algorithm,ant-colony algorithm,particle swarm optimization and artificial fish-swarm algorithm.These algorithms are put forward by researchers when they studied the national biology.The algorithms demonstrate great performance in solving the high scale problems.Firstly,the paper introduces these algorithms for readers.Secondly,the paper tests the performance such as astringency,speed of astringency and precision.Thirdly,the paper evaluates the ability of solving problems.Finally,the paper gives the possible direction of the four algorithms.
作者 王浩
机构地区 装甲兵工程学院
出处 《火力与指挥控制》 CSCD 北大核心 2008年第S2期71-75,共5页 Fire Control & Command Control
关键词 遗传算法 蚁群算法 粒子群算法 人工鱼群算法 genetic algorithm,ant colony algorithm,particle swarm optimization,artificial fish-swarm algorithm
  • 相关文献

参考文献5

二级参考文献44

  • 1马振华 刘坤林 等.运筹学与最优化理论卷[M].北京:清华大学出版社,1998.254-278.
  • 2戴汝为 周登勇.智能控制与适应性.第三届全球智能控制与自动化大会(WCICA'2000)[M].合肥:-,2000.11-17.
  • 3[1]Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the travelling salesman problem[J]. IEEE Trans Evol Comp,1997,1(1):53-66.
  • 4[2]Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans SMC: Part B,1996,26(1):29-41.
  • 5[3]Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies[A]. Proc IEEE Int Conf Evol Comp[C]. Piscataway, 1996.622-627.
  • 6[4]Boryczka U, Boryczka M. Generative policies in ant systems for scheduling[A]. 6th European Congr Intell Tech Soft Comp[C]. Bruxelles,1998.1:382-386.
  • 7[5]Boryczka U. Learning with delayed rewards in ant sys-tems for the job-shop scheduling problem[A]. First Int Conf Rough Sets Current Trends Comp[C]. Bruxelles,1998.271-274.
  • 8[6]Gambardella L M, Taillard E D, Dorigo M. Ant colonies for the quadratic assignment problem[J]. J Oper Res Soci,1999,50(2):167-176.
  • 9[7]Maniezzo V,Dorigo M,Colorni A.Algodesk:An experimental comparison of eight evolutionary heuristics applied to the quadratic assignment problem[J]. European J Oper Res,1995,81(1):188-204.
  • 10[8]Maniezzo V. Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem[J]. Infor J Comp,1999,11(4):358-369.

共引文献1392

同被引文献77

引证文献10

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部