摘要
随着智能算法的研究深入,一些新的智能优化算法不断被提出,包括从遗传算法、蚁群算法、粒子群算法、人工鱼群算法等。这些算法都是从自然界的自然生物的特性启发而研究出来的,由于这些算法在求解时不依赖于梯度信息,因而特别适用于传统方法解决不了的大规模复杂问题。通过这些算法的介绍和分析,并通过测试函数测试了四种算法的收敛性、收敛速度和精度,评价了这些智能算法在求解函数优化问题的能力。最后对优化算法今后的发展方向进行了评述与展望。
with the development of researches,many new intelligent algorithms are created such as genetic algorithm,ant-colony algorithm,particle swarm optimization and artificial fish-swarm algorithm.These algorithms are put forward by researchers when they studied the national biology.The algorithms demonstrate great performance in solving the high scale problems.Firstly,the paper introduces these algorithms for readers.Secondly,the paper tests the performance such as astringency,speed of astringency and precision.Thirdly,the paper evaluates the ability of solving problems.Finally,the paper gives the possible direction of the four algorithms.
出处
《火力与指挥控制》
CSCD
北大核心
2008年第S2期71-75,共5页
Fire Control & Command Control
关键词
遗传算法
蚁群算法
粒子群算法
人工鱼群算法
genetic algorithm,ant colony algorithm,particle swarm optimization,artificial fish-swarm algorithm