摘要
人工神经网络已应用在岩土工程的各个方面。针对常用的 BP 网络的不足之处,建立了基于自适应神经模糊推理系统(ANFIS)的单桩竖向极限承载力预测模型。利用文献中桩的载荷试验数据来训练 ANFIS 网络,确定了网络参数。研究结果表明。同常用的 BP 网络相比,ANFIS 预测模型具有学习速度快。拟合能力较好,训练结果唯一等优点,该方法是一种有效地预测单桩极限承载力的方法。
Artificial neural networks have been used in many areas in geotechnical engineering applications.Adaptive neuro-fuzzy inference system (ANFIS) is used to predict vertical ultimate bearing capacity of single pile.The data of pile load test obtained from a literature are used to train ANFIS network and to determine the network parameters.The results show that the proposed modeling approach outperforms classical back-propagation (BP) neural network in terms of computational speed,forecast errors,efficiency. ANFIS is an effective method to achieve both high accuracy and less computational complexity for predicting vertical ultimate bearing capacity.
出处
《岩土力学》
EI
CAS
CSCD
北大核心
2006年第S2期822-825,共4页
Rock and Soil Mechanics
基金
江苏省普通高校自然科学研究计划资助项目(No.05KJB560040)
江苏省基础研究计划(自然科学基金)资助项目(No.BK2006565)
关键词
单桩
竖向极限承载力
ANFIS
预测模型
single pile
vertical ultimate bearing capacity
ANFIS
predicting model