期刊文献+

基于多目标粒子群优化算法的短期电力负荷预测法 被引量:4

An Algorithm for Short-term Electrical Load Forecasting Based on Multi-objective Particle Swarm Optimization
下载PDF
导出
摘要 针对短期负荷预测的特点,提出一种基于多目标粒子群优化算法的短期电力负荷预测法。该算法充分利用了历史数据集的基本知识,利用多目标粒子群优化算法挑选出Pareto最优模式分类规则集,在考虑规则的分类准确性和可解释性的情况下,建立一个基于模糊规则的电力负荷模式分类系统。在仿真试验表明此分类系统具有较好的分类性能,可为电力负荷预测提供更为充分有效的历史数据,从而改善其负荷预测性能。 Aimed at the characteristics of short-term electrical load forecasting, an algorithm based on multi-objective particle swarm optimization is proposed in the paper. Considering with the accuracy and interpretation of fuzzy rules, a fuzzy rule-based classifier for electrical load pattern classification is set up, in which multi-objective particle swarm optimization is applied to choose the Pareto optimum rules. In the computation experiments, the results show that it leads to high classification performance, and it can supply more sufficient and effective historical data for load forecasting, better performance of load forecasting is gained accordingly.
机构地区 重庆市电力公司
出处 《电网技术》 EI CSCD 北大核心 2006年第S2期265-268,共4页 Power System Technology
关键词 关联规则挖掘 模糊分类系统 多目标优化算法 粒子群优化 电力负荷预测 association rule mining fuzzy rule-based classifier multi-objective optimization particle swarm optimization load forecasting
  • 相关文献

参考文献6

  • 1周驰,高海兵,高亮,章万国.粒子群优化算法[J].计算机应用研究,2003,20(12):7-11. 被引量:178
  • 2谢开贵,李春燕,周家启.基于神经网络的负荷组合预测模型研究[J].中国电机工程学报,2002,22(7):85-89. 被引量:101
  • 3Fonseca C M,Fleming P J.An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation . 1995
  • 4Kim K H,Youn H S,Rang Y C.Short-term load forecasting for special days in anomalous load conditions using neural networks and fuzzy inference method. IEEE Transactions on Power Systems . 2000
  • 5Kennedy J.The particle swarm : social adaptation of knowledge. . 1997
  • 6Chow T W S,et al.Neural network based short-term load forecasting using weather compensation. IEEE Transactions on Power Systems . 1996

二级参考文献32

  • 1雷鸣,吴雅,杨叔子.非线性时间序列建模与预测的神经网络法[J].华中理工大学学报,1993,21(1):47-52. 被引量:20
  • 2汪峰,谢开,于尔铿,刘国琪,王满义.一种简单实用的超短期负荷预报方法[J].电网技术,1996,20(3):41-43. 被引量:18
  • 3谢开贵 何斌 等.组合预测权系数的确定[J].预测,1998,17(7):151-154.
  • 4[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 5[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12.
  • 6[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996.
  • 7[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 8[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997.
  • 9[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995.
  • 10[7]Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[C].Annual,1998.

共引文献277

同被引文献70

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部