期刊文献+

基于LS-SVM的装备需求时间序列预测 被引量:6

Time Series Prediction of Military Equipment based on Least Square Support Vector Machine
下载PDF
导出
摘要 支持向量机(SVM)是一种基于结构风险最小化原理的学习技术,是一种新的具有很好泛化性能的数据挖掘工具。文中在最小二乘支持向量机(LS-SVM)回归算法的基础上,引入了混沌理论时间序列理论的相空间和嵌入维数概念,建立了LS-SVM时间序列预测模型,并应用于武器装备需求预测,预测结果证实了该模型和方法的有效性。 Support vector machine(SVM)is a learniug technology based on the structure risk minimization principle,and is also a new kind of data mining tool with good generalization.In this article,a time series forecasting model based on the least square support vector machine(LS-SVM)regression theory is given by induced the concept of phase space and embedding dimension from chaotic time series theory.Finally the application in the military equipment time series pre- diction of the model will be shown to validate the prediction precision of the method.
出处 《弹箭与制导学报》 CSCD 北大核心 2006年第S4期780-783,共4页 Journal of Projectiles,Rockets,Missiles and Guidance
关键词 支持向量机 时间序列 混沌 相空间 嵌入维数 support vector machine time series chaotic phase space embedding dimension
  • 相关文献

参考文献6

  • 1任博,张恒喜,苏畅.基于支持向量机的飞机备件需求预测[J].火力与指挥控制,2005,30(3):78-80. 被引量:30
  • 2De Brabanter J.LS-SVM regression modelling and its applications. . 2004
  • 3Espinoza M,Suykens J,De Moor B.Fixed-Size Least Squares Support Vector Machines:A large Scale application in electrical load forecasting. Internal Report 03-92,ESAT-SISTA,K.U. Leuven(Leuven,Belgium) . 2003
  • 4Pelekmans K,Suykens J.A.K,Van Gestel T,De Brabanter J,Lukas L,Hamers B,DE Moor B,Vandewalle J.LS-SVMlab:a Matlab/C toolbox for Least Squares Support Vector Ma- chines. Internal Report 02-44,ESAT-SIS- TA,K.U.Leuven (Leuven,Belgium) . 2002
  • 5M.R.Müler,A.J.Smola,G.R(?)tsch.Predicting time series with support vector machines. Proceeding of ICANN 97‘ . 1997
  • 6Sayan Mukherjee.Nonlinear Prediction of chaotic time series using support vector machines. Proceeding of NNSP‘97 . 1997

二级参考文献4

  • 1Stitson M O, Weston J A E,Gammerman A,et al.Theory of Support Vector Machines [R]. Technical Report CSD-TD-96-17 [R]. Royal Holloway,University of London 1996.
  • 2Scholkopf B, Bartlett P, Smola A, et al. Support Vectdr Regression with Automatic Accuracy Control [A].Proceedings of the 8th International Conference on Artificial Neural Networks,Perspectives in Computing[C], Berlin, Springer Verlag. 1998b : 111-166.
  • 3Muller K R,Smola A J, Ratsch G,et al. Predicting time series with support vector machines [A].editors,Artificial Neural Networks-ICANN'97[C].Springer, 1997 : 999-1004.
  • 4Zhu Jia-yuan, Ren Bo, Zhang Heng-xi, et al. Time Series Prediction Via New Support Vector Machines [A].In Proceedings of the First International Conference of Machine Learning and Cybernetics,ICMLC'2002[C], IEEE, Beijing : 2002:364-366.

共引文献29

同被引文献110

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部