期刊文献+

重力斜导数方法在时间域中的理论模型与研究 被引量:13

The Research of Theories Model in Time Area with the Method of Tilt Derivative in Gravity
下载PDF
导出
摘要 Miller和Singh在1994年首次提出了斜导数(Tilt梯度)的定义,J.Derek Fairhead和Chris M.Green又于2004年在斜导数的基础上提出了Tilt梯度水平导数的概念。国内学者已对斜导数及斜导数水平导数展开研究,设定了多体模型、无限延伸倾斜脉模型、有限延伸倾斜台阶模型及埋深相同无限延伸垂直厚板及薄板模型,得出一些结论。针对一些地质体产状的判断,提出非绝对值斜导数水平导数的新概念,并应用于理论模型中验证,得出正确的结论。在上述理论模型基础上补充了断层模型和无限延伸倾斜台阶模型,应用非绝对值水平导数的理论解释地质体的产状,并对上述模型提出新的观点和看法。 Miller and Singh firstly put forward the definition of Tilt derivative,and J Derek Fairhead and Chris M.Green put forward the definition of horizontal derivative of Tilt derivative.For judging the incline of the geological body,Many models managed by Tilt derivative and horizontal derivative of Tilt derivative have been researched by inland scholars.They have acquired some worthy conclusion.This text give the definition of non-absolute horizontal derivative of Tilt derivative.This method have been validated in theory models,and got a right conclusion.This text renews some models on the foundation of the models mentioned,use the theory of non-absolute horizontal derivative of Tilt derivative to explain the incline of the geological body,and put forward new standpoints and viewpoints combine the models related above.
出处 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2006年第S2期9-14,共6页 Journal of Jilin University:Earth Science Edition
基金 全国油气资源战略选区调查与评价项目(XQ-2004-07).
关键词 斜导数 产状 理论模型 Tilt derivative incline theories model
  • 相关文献

参考文献6

二级参考文献22

  • 1彭放,徐忠祥.灰色系统关联度的新模型及其在预测矿体埋深中的应用[J].地球科学(中国地质大学学报),1995,20(1):63-67. 被引量:3
  • 2长春地质学院重力教研室.重力勘探[M].北京:地质出版社,1979..
  • 3彭放,地球科学,1995年,20卷,1期,63页
  • 4罗孝宽,应用地球物理教程.重力、磁法,1991年,81,95页
  • 5邓聚龙,灰色预测与决策,1986年,103页
  • 6长春地质学院重力教研室,重力勘探,1979年,157页
  • 7Stanley J M. Simplified gravity interpretation by gradientsthe geologic contact. Geophysics, 1977, 42:1230-1235.
  • 8Klingele E E et al. Automatic interpretation of gravity gradiometric data in two dimensions-vertical gradient. Geophys Prosp , 1991,39:407-434.
  • 9Hinojosa J H and Mickusz K L. Hilbert transform of gravity gradient profiles: special cases of the general gravity-gradient tensor in the Fourier transform domain. Geophysics, 2002, 67 : 766-769.
  • 10Salem Aet al. Linearized least-squares method for interpretation of potential-field data from sources of simple geometry. Geophysfcs, 2004, 69;783-788.

共引文献73

同被引文献169

引证文献13

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部