期刊文献+

用差异进化和变邻域搜索解决无等待流水线调度问题 被引量:5

Effective Heuristics Based on Differential Evolution and Variable Neighborhood Search for No-wait Flow Shop
下载PDF
导出
摘要 提出了解决无等待流水线调度问题的离散差异进化(DDE)算法和变邻域搜索(VNS)算法。与标准差异进化(DE)算法不同,DDE算法采用了基于工序的编码和新的个体生成方法,因而能直接用于求解生产调度这类复杂问题;VNS算法采用多重移动邻域以提高性能。为了进一步提高求解质量,将DDE和VNS结合,得到三种混合算法:DDE—VNS、DDE_(VNS)和DDE&VNS。仿真试验表明:上述算法都是有效的,混合算法优于单一算法,VNS、DDE—VNS、DDE_(VNS)和DDE&VNS等4种算法优于国际上同类研究的最新成果。 The discrete differential evolution(DDE)and variable neighborhood search(VNS) were developed for the no-wait flow shop problem.In the DDE,the natural encoding scheme based on job permutation and newly designed methods to produce new individual were employed.While in the VNS,the multimoves were adpoted that consisted in performing several moves simultaneously in a single iteration of algorithm and allowed us to accelerate the convergence to good solutions.In order to improve solution quality,three hybrid heuristics(DDE-VNS,DDE_(VNS) and DDE&VNS)which combined DDE with VNS effectively were presented.Computational results based on the well known benchmark suites in the literature show that VNS,DDE-VNS,DDE_(VNS) and DDE&VNS produce slightly better results than that by the taboo search of Grabowski and Pempera's for the makespan cri- terion.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第S2期157-160,共4页 China Mechanical Engineering
基金 国家自然科学基金(50275078) 山东省自然科学基金(2004ZX14 2004ZX17)
关键词 无等待流水线调度问题 差异进化算法 变邻域搜索算法 混合算法 no-wait flow shop scheduling discrete differential evolution variable neighborhood search hybrid heuristics
  • 相关文献

参考文献3

二级参考文献24

  • 1Chu C, Proth J M, Wang C. Improving job-shop schedules through critical pairwise exchanges. International Journal of Production Research, 1998, 36(3): 683-694.
  • 2Nowicki E, Smutnicki C. A fast taboo search algorithm for the job shop scheduling. Management Science, 1996, 42(6):797-813.
  • 3Shi G Y. A genetic algorithm applied to a classic job-shop scheduling problem. International Journal of Systems Science, 1997, 28(1): 25-32.
  • 4Laarhoven P V, Aarts E, Lenstra J K. Job shop scheduling by simulated anncaling. Operations Research, 1992, 40:113-125.
  • 5Corce F D, Tadei R, Volta G. A genetic algorithm for the job shop problem. Computers and Operations Research, 1995,22:15-24.
  • 6Amico M D, Trubian M. Applying tabu search to the job shop scheduling problems. Annual Operations Research,1993, 40:231-252.
  • 7Cheng R W,Gen M,Tsujimura Y.A Tutorial Survey of Job-shop Scheduling Problems Using Genetic Algorithms,Part Ⅱ:Hybrid Genetic Search Strategies.Computers & Industrial Engineering,1999,33(2):343~364
  • 8Shi G Y.A Genetic Algorithm Applied to a Classic Job-shop Scheduling Problem.International Journal of Systems Science,1997,28(1):25~32
  • 9Ponnambalam S G,Aravindan P,Rajesh S V.A Tabu Search Algorithm for Job Shop Scheduling.The International Journal of Advanced Manufacturing Technology,2000,16:765~771
  • 10van Laarhoven P,Aarts E,Lenstra J K.Job Shop Scheduling by Simulated Annealing.Operations Research,1992,40:113~ 125

共引文献41

同被引文献56

引证文献5

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部