期刊文献+

基于知识工程的图形化网络拓扑诊断系统 被引量:1

Development of Intelligent Fault Diagnosis System Based on KBE Graph
下载PDF
导出
摘要 针对目前智能诊断系统缺乏有效的知识库开发工具、推理功能单一等问题,开发了一套基于知识工程(KBE)的图形化网络拓扑诊断系统。KBE图形化网络拓扑专家知识表达使专家知识的建立、修改、扩充和维护于一体,不需编写专门代码,节省了时间,减少了人为出错的可能性。集专家规则、模糊逻辑和神经网络于一体的组合智能推理机使系统适应于多变量、多参数、多目标及多过程的复杂系统。在Bently模拟转子试验台上对系统的有效性进行了验证,取得较好的效果。该系统已获国家发明专利。 This paper aimed at solving the insufficiency problem in the current intelligent fault diagnosis system,such as lack of development tools,inference oversimplification,and developed a kind of diagnosis system based on network and KBE graph.The system is simple and easy to establish, modify,expand and maintain and does not need further coding.In addition,it can significantly save time and reduce the chance of failure.The integration of expert rules,fuzzy logic and nerve network enables the system to adapt to those complicated systems which involve in multi-variable,multi-pa- rameter,multi-object and multi-process.As an example,an on-line detection system for simula- tion rotor test bench had been established and the typical faults were successfully diagnosed through it,which proved the validity and reliability of this system.Furthermore,the system had been de- clared national invention patent.
作者 李绍彬
机构地区 重庆师范大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2006年第S2期226-229,共4页 China Mechanical Engineering
基金 国家自然科学基金(90410004) 新世纪优秀人才支持计划资助项目
关键词 基于知识工程(KBE) 图形化 故障 智能诊断 KBE graph fault intelligent diagnosis
  • 相关文献

参考文献2

二级参考文献6

共引文献5

同被引文献14

  • 1文昌俊,李莉,杨练根.多元质量控制分析与多元过程能力指数计算研究[J].湖北工业大学学报,2009,24(1):32-34. 被引量:5
  • 2张冰凌,许英姿,潘全文.智能故障诊断方法的研究和展望[J].飞机设计,2007,27(5):55-59. 被引量:18
  • 3Mojtaba Salehi, Ardeshir Bahreininegad, Isa Nakhai. On-line analysis of out-of-control signals in multivariate manufacturing processes using a hybrid learning-based model [ J ]. Neurocomputing, 2011, 74 ( 12-13 ) : 2083-2095.
  • 4Zhang Jiujun, Li Zhonghua, Wang Zhaojun. A multiva- riate control chart for simultaneously monitoring process mean and variability[J]. Computational Statistics and Data Analysis, 2010, 54(10): 2244-2252.
  • 5Czeslaw T Kowalski, Teresa Orlowska-Kowalska. Neu- ral networks application for induction motor faults diag- nosis[J]. Mathematics and Computers in Simulation, 2003, 63(3-5) :435-448.
  • 6Wang Huaqing, Chen Peng. Intelligent diagnosis method for rolling element bearing faults using possi- bility theory and neural network[J]. Computers Industrial Engineering, 2011, 60(4) :511-518.
  • 7Yu Jianbo, Xi Lifeng. A neural network ensemble- based model for on-line monitoring and diagnosis of out-of-control signals in multivariate manufacturing processes [J]. Expert Systems with Applications, 2009, 36(1): 909-921.
  • 8Pan Wentsao. A new fruit fly optimization algorithm: Taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26: 69-74.
  • 9张新海,雷勇.BP神经网络在机械故障诊断中的应用[J].噪声与振动控制,2008,28(5):95-97. 被引量:27
  • 10李泓泽,郭森,李春杰.果蝇优化最小二乘支持向量机混合预测模型——以我国物流需求量预测为例[J].经济数学,2012,29(3):103-106. 被引量:16

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部