摘要
网络的发展越来越迅速,各种智能型的网络入侵检测系统也越来越受到人们的重视.本文在分析了各种入侵检测系统的基础上提出了一种基于粗粒度模型遗传算法的网络入侵检测系统,让各个处理器能够并行地进行遗传算法的操作,重新合理地设计了适应度函数,使遗传“基因”的取舍和利用更加合理,使算法的性能和运行速度得到了提高,充分发挥了遗传算法在网络入侵检测系统中的应用.
The development of the Internet is more and more fast, all kinds of intelligent net- work intrusion detection system(NIDS) are more recognized by people. This paper put forward a coarse-grained model genetic algorithm NIDS, let all processor can do genetic algorithm by attributed manner, at the same time, recommend an new operator, redesign a reasonable fitness function, let the use of 'gene' is more reasonable, develop the performance and speed of the arithmetic, make full use of the genetic algorithm in NIDS.
出处
《云南大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第S2期51-55,共5页
Journal of Yunnan University(Natural Sciences Edition)
基金
云南省教育厅应用基础研究重点项目(03Z180A)
关键词
网络入侵检测系统
并行遗传算法
智能
粗粒度模型
适应度函数
net-work intrusion detection system (NIDS)
collateral genetic algorithm (AG)
intelligence
coarse-grained model
fitness function