期刊文献+

Wrongsky行列式与线性常微分方程通解的结构

Wrongsky determinant and the Structure of linear Ordinary Differential Equation's Common Solution
原文传递
导出
摘要 在讨论函数组的线性关系时,Wrongsky行列式是否为零成为函数组线性相关或线性无关的必要条件,这种必要条件在函数组条件加强为n阶线性常微分方程的一组特解后,即得到函数组线性相关或线性无关的充分且必要条件,成为确定n阶线性常微分方程的通解的结构的重要依据。 When discussing the linear relation between function group,whether the result of Wrongsky de- terminant is zero or not is the essential condition for the interrelation or uninterrelation between function group. After the condition for function group strengthens a group of special solution for a n factorial linear ordinary dif- ferential equation,the essential condition mentioned above becomes the ample and essential condition for the in- terrelation or uninter relation between function group,and becomes the important basis for determining the struc- ture of n factorial linear ordinary differential equation's Common Solution.
作者 胡利军
出处 《阴山学刊(自然科学版)》 2006年第4期10-11,共2页 Yinshan Academic Journal(Natural Science Edition)
关键词 Wrongsky行列式 线性相关 常微分方程的通解 Wrongsky determinant Linear interrelation Ordinary differential equation's Common Solution
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部