摘要
Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transition, the phenomena that both the fore arc and rear arc of twin wire welding deflect to the middle of the two arcs is found. Based on this the double ellipsoid heat source model is amended, and a heat source model which can be applied to calculate the temperature field of twin wire welding was put forward. This model is testified by actual experiment of temperature sampling. Then, the evolution regularities of longitudinal and transverse stress for 2219 sheets were investigated under the condition of twin wire welding. The result shows that longitudinal residual stress value of twin wire welding is 10% higher than that of the single wire welding.
Twin wire weld temperature results calculated by classical double ellipsoid heat source model are bigger than the experimental results. By analyzing the shape of twin wire welding arcs and the track of droplets transition, the phenomena that both the fore arc and rear arc of twin wire welding deflect to the middle of the two arcs is found. Based on this the double ellipsoid heat source model is amended, and a heat source model which can be applied to calculate the temperature field of twin wire welding was put forward. This model is testified by actual experiment of temperature sampling. Then, the evolution regularities of longitudinal and transverse stress for 2219 sheets were investigated under the condition of twin wire welding. The result shows that longitudinal residual stress value of twin wire welding is 10% higher than that of the single wire welding.
出处
《中国有色金属学会会刊:英文版》
CSCD
2005年第S2期5-10,共6页
Transactions of Nonferrous Metals Society of China
基金
Project(2002AA305402)supportedbytheHigtechResearchandDevelopmentProgramofChina