期刊文献+

Microstructure and mechanical performance of friction stir welded joints of AZ31 magnesium alloy 被引量:1

Microstructure and mechanical performance of friction stir welded joints of AZ31 magnesium alloy
下载PDF
导出
摘要 The weld formation, microstructure and mechanical performance of friction stir welded joints of AZ31 Mg alloy were investigated. The results show that the plastic flow of the material welded is improved and the cavities disappear with increasing the rotation speed. With increasing the welding speed, the grain growth accompanied by the dynamic recrystallization in the weld nugget is restrained, and the structure of the grain becomes finer. The optimum technological parameters for the friction stir welding of 4mm AZ31 Mg alloy are as follows: rotation speed 1000r/min, and welding speed 45mm/min. The tensile strength coefficient of AZ31 Mg alloy is up to 63.7%. The brittle fracture of the joints belongs to the mixed fracture mode, the upper part of the weld is often brittle fracture, and the lower part is slight ductile fracture. The microhardness of the weld nugget is the lowest, that of the thermo-mechanical affected zone slightly increases, and that of the heat-affected zone is equal to that of the base metal. The weld formation, microstructure and mechanical performance of friction stir welded joints of AZ31 Mg alloy were investigated. The results show that the plastic flow of the material welded is improved and the cavities disappear with increasing the rotation speed. With increasing the welding speed, the grain growth accompanied by the dynamic recrystallization in the weld nugget is restrained, and the structure of the grain becomes finer. The optimum technological parameters for the friction stir welding of 4mm AZ31 Mg alloy are as follows: rotation speed 1000r/min, and welding speed 45mm/min. The tensile strength coefficient of AZ31 Mg alloy is up to 63.7%. The brittle fracture of the joints belongs to the mixed fracture mode, the upper part of the weld is often brittle fracture, and the lower part is slight ductile fracture. The microhardness of the weld nugget is the lowest, that of the thermo-mechanical affected zone slightly increases, and that of the heat-affected zone is equal to that of the base metal.
出处 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期21-24,共4页 Transactions of Nonferrous Metals Society of China
关键词 AZ31 Mg alloy FRICTION STIR welding MICROSTRUCTURE mechanical performance AZ31 Mg alloy friction stir welding microstructure mechanical performance
  • 相关文献

同被引文献3

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部