期刊文献+

求解一类随机优化问题的粒子群算法 被引量:1

Particle Swarm Algorithm for Solving a Class of Stochastic Optimization Problems
下载PDF
导出
摘要 提出了一个解随机优化问题的粒子群算法.该算法易理解,程序上易实现,克服了随机优化问题难以高效实现全局优化的缺点.数值实验结果表明,所提出的算法能够快速地收敛到随机优化问题的最优解,并且具有良好的鲁棒性,是此类问题的一个高效求解算法. A particle swarm algorithm to solve a class of stochastic optimization problem is proposed.the algorithm,which is easy to understand and operate in program,overcomes the short-coming that stochastic optimization problem can't find global optimal solution efficiently.The numerical experiment results demonstrate that the proposed algorithm can rapidly converge to the optimal solution and is an efficient method because of it's good robustness.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2005年第S2期51-53,共3页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金(69972036) 教育部跨世纪优秀人才基金资助项目
关键词 随机优化 粒子群算法 均匀分布 stochastic optimization problems particle swarm algorithm uniform distribution
  • 相关文献

参考文献3

二级参考文献13

  • 1盛骤 谢式千 潘家毅.概率论与数理统计[M].北京:高等教育出版社,1990..
  • 2WANG L.Intelligent Optimization Algorithms with Applications [M].Beijing:Tsinghua University & Springer Press,2001.
  • 3MICHALEWICZ Z.Genetic Algorithm+Data Structures=Evolution Programs [M].Berlin:Springer-Verlag,1996.
  • 4BEYER H G.Evolutionary algorithms in noisy environments:theoretical issues and guidelines for practice [J].Computer Methods in Applied Mechanics and Engineering,2000,186(2/4):239-267.
  • 5LIU X.Introduction to Statistics [M].Beijing:Tsinghua University Press,1998.
  • 6PINEDO M.Scheduling:Theory Algorithms and Systems [M].Engle-wood Cliffs,NJ:Prentice-Hall,1995.
  • 7WANG L,ZHENG D Z.An effective hybrid heuristic for flow shop scheduling [J].Int J of Advanced Manufacturing Technology,2003,21(1):38-44.
  • 8BALASUBRAMANIAN J,GROSSMANN I E.A novel branch and bound algorithm for scheduling flowshop plants with uncertain processing times [J].Computers and Chemical Engineering,2002,26(1):41-57.
  • 9REEVES C R.A genetic algorithm for flowshop sequencing [J].Computers and Operations Research,1995,22(1):5-13.
  • 10王凌,郑大钟.Meta-heuristic算法研究进展[J].控制与决策,2000,15(3):257-262. 被引量:22

共引文献46

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部