期刊文献+

Robust Input-Output Energy Decoupling for Uncertain Singular Systems

Robust Input-Output Energy Decoupling for Uncertain Singular Systems
下载PDF
导出
摘要 This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control. This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.
出处 《International Journal of Automation and computing》 EI 2005年第1期37-42,共6页 国际自动化与计算杂志(英文版)
关键词 Uncertain singular systems generalized quadratical stability input-output energy decoupling linear matrix inequality (LMI) Uncertain singular systems generalized quadratical stability input-output energy decoupling linear matrix inequality (LMI)
  • 相关文献

参考文献2

  • 1R. W. Newcomb,B. Dziurla.Some circuits and systems applications of semistate theory[J].Circuits Systems and Signal Processing.1989(3)
  • 2F. L. Lewis.A survey of linear singular systems[J].Circuits Systems and Signal Processing.1986(1)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部