期刊文献+

f-x经验模式分解迭后去噪方法与应用

The De-noising Method of Stack Section via f-x Empirical Mode Decomposition and Its Application
下载PDF
导出
摘要 提出一种在f-x域中利用经验模式分解去除相干噪声与随机干扰的方法,将它用于迭后记录的去噪处理,并与使用自回归模型的f-x线性预测滤波结果做了比较,表明这种方法能有效去除迭后噪声. The method which was used to eliminate noises in stack section for removing noise via empirical mode decomposition(EMD) in f-x domain was presented in this paper.Compared to conventional prediction filtering method,the method was more effective.
作者 刘保童
出处 《天水师范学院学报》 2011年第2期104-105,共2页 Journal of Tianshui Normal University
基金 甘肃省教育厅自然科学基金项目"不规则采样信号的谱估计方法及应用研究"(0908B-1)阶段性成果
关键词 迭后记录 信噪比 经验模式分解 线性预测滤波 stack section signal to noise ratic empirical mode decomposition linear prediction filtering
  • 相关文献

参考文献5

  • 1SIMAAN M, LOVE P L.Optimum suppression of coherent noises with linear moveout in seismic data[J].Geophysics, 1984,49(3):215 -226.
  • 2刘保童.地震信号去噪与波场分离方法研究[D].西安:西安科技大学.2006.
  • 3刘保童,朱光明.自适应主分量提取算法及应用[J].物探与化探,2005,29(5):452-454. 被引量:2
  • 4HUANG N,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonsta tionary time series analysis[J].Proceedings of Royal Society of London A.1998,454:903-995.
  • 5RILLING G,FLANDRIN P.One or two frequencies?The empirical mode decomposition answers[J].IEEE Transac- tions on Signal Processing,2008,56(1):85-95.

二级参考文献8

  • 1Baldi P, Hornik K. Neural networks and principal component analysis:learning from examples without local minima [ J ]. Neural Networks, 1989,2:53 - 58.
  • 2Oja E, Karhunen J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix[ J]. Journal of Mathematical Analysis and Applications, 1985,104:69 -84.
  • 3Sanger T D. Optimal unsupervised learning in a single-layer Linear feedforward neural network [ J ]. Neural Networks, 1989, ( 2 ) :459- 473.
  • 4Kung S Y, Diamantaras K I, Taur J S. Adaptive principal component extraction (APEX) and applications [ J ]. IEEE Transactions on Signal Processing, 1994,42:1202 - 1217.
  • 5Karhunen J, Joutsensalo J. Generalizations of principal component analysis, optimization problems, and neural networks [ J ]. Neural Networks, 1995,8:549 - 562.
  • 6Simon Haykin. Neural Networks: A comprehensive foundation,2nd edition [ M ]. Pearson Education, inc, 1999.
  • 7Fredric M Ham, Ivica Kostanic. Principles of neural computing for science and engineering[ M]. McGraw-Hill Companies,inc ,2001.
  • 8程云鹏.矩阵论[M].西安:西北工业大学出版社,2001..

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部