期刊文献+

京珠高速K108边坡软弱夹层流变参数的智能反演 被引量:3

Intelligent Back Analysis on Rheological Parameters of Weak Intercalation in K108 Slope of Jingzhu Expressway
下载PDF
导出
摘要 岩土体的流变特性是影响边坡变形及稳定性的重要因素,对边坡进行稳定性评价、结合变形监测资料对边坡进行预警预报,都有必要考虑岩土体的流变效应。本文以京珠高速K108边坡为研究对象,采用粘弹塑性数值方法建立该边坡的计算模型,通过大量的数值分析获得神经网络的训练样本,由人工神经网络的非线性映射功能建立岩土体流变位移与待反演参数之间的特征关系,将实测位移代入训练好的神经网络进行反分析得到软弱夹层的流变参数,通过后验差的方法验证了反演结果的合理性,得到的结果可用于后续的边坡稳定分析及预警。 For the slope,the rheological property of rock and soil medium is one of the important reasons for the large deformation and loss of stability.It's necessary to take the rheological property into consideration when we evaluate the stability of a slope,forecast the deformation and early warn landslide disaster with monitoring deformation data.This paper back analyzes the mechanical parameters of K108 Slope of Jingzhu Expressway using Artificial Neural Network and Genetic Algorithm.The visco-elastic-plastic computing model of slope is built,and training samples for Artificial Neural Network can be obtained through a lot of calculation.Parameters obtained through back analysis method are verified by posterior variance examination,it's proved that the results are reasonable and can be used in subsequent processes.
出处 《地下空间与工程学报》 CSCD 北大核心 2011年第3期485-490,共6页 Chinese Journal of Underground Space and Engineering
关键词 边坡 软弱夹层 流变 智能反演 slope weak intercalation rheology intelligent back analysis
  • 相关文献

参考文献7

二级参考文献43

  • 1冯夏庭.岩石力学智能化的研究思路[J].岩石力学与工程学报,1994,13(3):205-208. 被引量:16
  • 2冯夏庭,王泳嘉.采矿科学发展的新方向──智能采矿学[J].科技导报,1995,13(8):20-22. 被引量:16
  • 3刘勇.非数值并行算法(第二册)-遗传算法[M].科学出版社,1997.1.
  • 4杨成祥.材料本构模型自适应识别的初步研究(硕士学位论文)[M].沈阳:东北大学,1998..
  • 5Bakirtzis A G, Theocharis J B, Kiartzis S J, et al. Short term load forecasting using fuzzy neural networks[J].IEEE Transactions on Power Systems. 1995, 10 (3): 1518-1 524.
  • 6Kiartzis S J, Bakirtzis A G, Petridis V. Short-term load forecasting using neural networks[J]. Electric Power Systems Research, 1995, 33 (1) : 1-6.
  • 7Kim K H, Park J K, Hwang K J, ct al. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems[J]. IEEE Transactions on Power Systems. 1995, 10 (3): 1534-1539.
  • 8Maifeld T, Sheblc G. Short-term load forecasting by a neural network and a refined genetic algorithm [J].Electric Power Syatems Research, 1994, 31 (3): 147-152.
  • 9Chou Jung-Huai. Genetic algorithm in structural damage detection[J]. Computers & structures, 2001, 79 (14):1 335-1 353.
  • 10Vittorio Maniezzo. Genetic evolution of the topology and weight distribution of neural networks[J]. IEEE Transactions on Neural Networks, 1994, 5(1):39-53.

共引文献283

同被引文献23

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部