摘要
Objective To investigate the function of microtubules in volume overload cardiac hypertrophy of rat. Methods The structure of microtubules was observed using an immunofluorescent microscope, while the pixel intensity and distribution of microtubule imaging was estimated from laser scanning confocal images of left ventricular cardiocytes immuno-labeled with an antibody to β-tubulin. Results The pixels of the microtubule image taken just after volume overload were not evenly distributed. At 6 hours after overload, the pixel intensity of the microtubule image was decreased to less than 150 (arbitrary units), which was the same as the pixel intensity and distribution of the colchicine depolymerized microtubule image. The changes were partially recovered to 200 (arbitrary units) after 4 more days. The pixel intensity of the control microtubule image was 250 (arbitrary units) and had an even distribution. The structuring of the microtubules was more disordered as volume overload hypertrophy developed. Conclusions There are disorders in the signal transduction pathways governing the hypertrophic response of cardiomyocytes in the hypertrophic myocardium and microtubule is one of the members of the signal transduction pathways governing the hypertrophic response of cardiomyocytes in the hypertrophic myocardium. The disordered microtubule array may be targeted during heart failure treatment.
Objective To investigate the function of microtubules in volume overload cardiac hypertrophy of rat. Methods The structure of microtubules was observed using an immunofluorescent microscope, while the pixel intensity and distribution of microtubule imaging was estimated from laser scanning confocal images of left ventricular cardiocytes immuno-labeled with an antibody to β-tubulin. Results The pixels of the microtubule image taken just after volume overload were not evenly distributed. At 6 hours after overload, the pixel intensity of the microtubule image was decreased to less than 150 (arbitrary units), which was the same as the pixel intensity and distribution of the colchicine depolymerized microtubule image. The changes were partially recovered to 200 (arbitrary units) after 4 more days. The pixel intensity of the control microtubule image was 250 (arbitrary units) and had an even distribution. The structuring of the microtubules was more disordered as volume overload hypertrophy developed. Conclusions There are disorders in the signal transduction pathways governing the hypertrophic response of cardiomyocytes in the hypertrophic myocardium and microtubule is one of the members of the signal transduction pathways governing the hypertrophic response of cardiomyocytes in the hypertrophic myocardium. The disordered microtubule array may be targeted during heart failure treatment.