摘要
In this paper,uniqueness of entire function related to shared set is studied.Let f be a non-constant entire function and k be a positive integer,d be a finite complex number.There exists a set S with 3 elements such that if f and its derivative f(k)satisfy E(S,f)= E(S,f(k)),and the zeros of f(z)-d are of multiplicity ≥ k + 1,then f = f(k).
In this paper,uniqueness of entire function related to shared set is studied.Let f be a non-constant entire function and k be a positive integer,d be a finite complex number.There exists a set S with 3 elements such that if f and its derivative f(k)satisfy E(S,f)= E(S,f(k)),and the zeros of f(z)-d are of multiplicity ≥ k + 1,then f = f(k).
基金
Supported by the Natural Science Foundation of Anhui Province (Grant No. KJ2010B124)