期刊文献+

Hyponormality of Toeplitz Operators on the Dirichlet Space

Hyponormality of Toeplitz Operators on the Dirichlet Space
下载PDF
导出
摘要 In this paper,we prove that the necessary and sufficient condition for a Toeplitz operator Tu on the Dirichlet space to be hyponormal is that the symbol u is constant for the case that the projection of u in the Dirichlet space is a polynomial and for the case that u is a class of special symbols,respectively.We also prove that a Toeplitz operator with harmonic polynomial symbol on the harmonic Dirichlet space is hyponormal if and only if its symbol is constant. In this paper,we prove that the necessary and sufficient condition for a Toeplitz operator Tu on the Dirichlet space to be hyponormal is that the symbol u is constant for the case that the projection of u in the Dirichlet space is a polynomial and for the case that u is a class of special symbols,respectively.We also prove that a Toeplitz operator with harmonic polynomial symbol on the harmonic Dirichlet space is hyponormal if and only if its symbol is constant.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第6期1057-1063,共7页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No.10971195) the Natural Science Foundation of Zhejiang Province (Grant Nos.Y6090689 Y6110260)
关键词 Toeplitz operator hyponormality Dirichlet space harmonic Dirichlet space Toeplitz operator hyponormality Dirichlet space harmonic Dirichlet space
  • 相关文献

参考文献16

  • 1COWEN C C. HyponormM and Subnormal Toeplitz Operators [M]. Longman Sci. Tech., Harlow, 1988.
  • 2COWEN C C. HyponormaJity of Toeplitz operaors [J]. Proc. Amer. Math. Soc., 1988, 103(3): 809-812.
  • 3CURTO R E, LEE W Y. Joint hyponormality of Toepli'tz pairs [J]. Mem. Amer. Math. Soc., 2001, 150(712): x+65 pp.
  • 4FARENICK D R, LEE W Y. HyponormaJity and spectra of Toeplitz operators [J]. Trans. Amer. Math. Soc., 1996, 348(10): 4153-4174.
  • 5HWANG I S, KIM I H, LEE W Y. Hyponormality of Toeplitz operators with polynomial symbols [J]. Math. Ann., 1999, 313(2): 247-261.
  • 6HWANG I S, LEE W Y. Hyponormality of trigonometrieToeplitz operators [J]. Trans. Amer. Math. Soc., 2002, 354(6): 2461-2474.
  • 7NAKAZI T, TAKAHASHI K. Byponormal Toeplitz operators and extremal problems of Hardy spaces [J]. Trans. Amer. Math. Soc., 1993, 338(2): 753-767.
  • 8ZHU Kehe. Hyponormal Toeplitz operators with polynomial symbols {J]. Integral Equations Operator Theory, 1995, 21(3): 376-381.
  • 9HWANG I S. Hyponormal Toeplitz operators on the Bergman space [J]. J. Korean Math. Soc., 2005, 42(2): 387-403.
  • 10HWANG I S, LEE J. Hyponormal Toeplitz operators on the Bergman space (II) [J]. Bull. Korean Math. Soc., 2007, 44(3): 517-522.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部