期刊文献+

Error of One-leg Methods for Singular Perturbation Problems with Delays 被引量:1

Error of One-leg Methods for Singular Perturbation Problems with Delays
全文增补中
导出
摘要 This paper is concerned with the error behaviour of one-leg methods applied to some classes of one-parameter multiple stiff singularly perturbed problems with delays. We derive the global error estimates of A-stable one-leg methods with linear interpolation procedure. This paper is concerned with the error behaviour of one-leg methods applied to some classes of one-parameter multiple stiff singularly perturbed problems with delays. We derive the global error estimates of A-stable one-leg methods with linear interpolation procedure.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2002年第4期629-640,共12页 应用数学学报(英文版)
基金 the National Natural Science Fundation of China (No.19871086&10101027) China Postdoctoral Science Foundationa.
关键词 Singular perturbation problems DELAYS INTERPOLATION one-leg methods CONVERGENCE Singular perturbation problems, delays, interpolation, one-leg methods, convergence
  • 相关文献

参考文献6

  • 1K. J. In ’t Hout.Convergence of Runge-Kutta Methods for Delay Differential Equations[J].Bit Numerical Mathematics.2001(2)
  • 2Stefan Schneider.Convergence results for general linear methods on singular perturbation problems[J].BIT.1993(4)
  • 3K. Strehmel,R. Weiner,I. Dannehl.On error behaviour of partitioned linearly implicit runge-kutta methods for stiff and differential algebraic systems[J].BIT.1990(2)
  • 4E. Hairer,Ch. Lubich,M. Roche.Error of rosenbrock methods for stiff problems studied via differential algebraic equations[J].BIT.1989(1)
  • 5E. Hairer,Ch. Lubich,M. Roche.Error of Runge-Kutta methods for stiff problems studied via differential algebraic equations[J].BIT.1988(3)
  • 6Alfredo Bellen,Marino Zennaro.Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method[J].Numerische Mathematik.1985(2)

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部