期刊文献+

Boltzmann Equations with Quantum Effects (1):Long Time Behavior of Spatial Decay Solutions

Boltzmann Equations with Quantum Effects (1):Long Time Behavior of Spatial Decay Solutions
原文传递
导出
摘要 The Boltzmann equations for Fermi-Dirac particles and Bose-Einstein particles, both in the absence of external force fields, are combined into a more general form called the Boltzmann equation with quantum effects (BQE). It is assumed that the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤cΦ(x,v,0) for a positive constant c and certain types of control functions Φ(x,v,t). Then within a given function space B(Φ), we prove that f(x+tv,v,t) uniformly converges to f ∞(x,v) in a certain norm where f ∞(x,v)= limt→∞f(x+tv,v,t) and different initial data determines different long time limits. The Boltzmann equations for Fermi-Dirac particles and Bose-Einstein particles, both in the absence of external force fields, are combined into a more general form called the Boltzmann equation with quantum effects (BQE). It is assumed that the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤cΦ(x,v,0) for a positive constant c and certain types of control functions Φ(x,v,t). Then within a given function space B(Φ), we prove that f(x+tv,v,t) uniformly converges to f ∞(x,v) in a certain norm where f ∞(x,v)= limt→∞f(x+tv,v,t) and different initial data determines different long time limits.
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期215-218,共4页 清华大学学报(自然科学版(英文版)
基金 Supported by the Tsinghua U niversity Science Fund
关键词 Boltzmann equation quantum effects spatial decay solution long time behavior Boltzmann equation quantum effects spatial decay solution long time behavior
  • 相关文献

参考文献8

  • 1Xuguang Lu.A Modified Boltzmann Equation for Bose–Einstein Particles: Isotropic Solutions and Long-Time Behavior[J]. Journal of Statistical Physics . 2000 (5-6)
  • 2J. Dolbeault.Kinetic models and quantum effects: A modified Boltzmann equation for Fermi-Dirac particles[J]. Archive for Rational Mechanics and Analysis . 1994 (2)
  • 3Bellomo N,Palczewski A,Toscani G.Mathematical Topics in Nonlinear Kinetic Theory. . 1989
  • 4Cercignani C.The Boltzmann Equation and Its Applications. . 1988
  • 5Lions P L.Compactness in Boltzmann-equation via Fourier integral -operators and applications (3). Journal of Mathematics of Kyoto University . 1994
  • 6LU Xuguang.Spatial decay solutions of the Boltzmann equation: Converse properties of long time limiting behavior. SIAM Journal on Mathematical Analysis . 1999
  • 7Cercignani C,Illner R,Pulvirenti M.The Mathematical Theory of Dilute Gases. . 1994
  • 8Chapman S,Cowling T G.The Mathematical Theory of Non-Uniform Gases. . 1970

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部