摘要
A previous study is continued by investigating the Boltzmann equation for particles with quantum effects (BQE). First, the corresponding entropy identity is proved, then if the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤CΦ(x,v,0) for a constant 0<C<∞ and function Φ(x,v,t), we prove the existence and uniqueness of spatial decay solutions of the BQE within a given function space B(Φ) using fixed point theory. Moreover, if there is a continuous function F(x,v) which belongs to a function set, then there exists a mild solution f(x,v,t) of the BQE such that f ∞(x,v)= limt→∞f(x+vt,v,t)=F(x,v).
A previous study is continued by investigating the Boltzmann equation for particles with quantum effects (BQE). First, the corresponding entropy identity is proved, then if the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤CΦ(x,v,0) for a constant 0<C<∞ and function Φ(x,v,t), we prove the existence and uniqueness of spatial decay solutions of the BQE within a given function space B(Φ) using fixed point theory. Moreover, if there is a continuous function F(x,v) which belongs to a function set, then there exists a mild solution f(x,v,t) of the BQE such that f ∞(x,v)= limt→∞f(x+vt,v,t)=F(x,v).
基金
Supported by the Tsinghua U niversity Science Fund