期刊文献+

Boltzmann Equations with Quantum Effects (2): Entropy Identity, Existence and Uniqueness of Spatial Decay Solutions

Boltzmann Equations with Quantum Effects (2): Entropy Identity, Existence and Uniqueness of Spatial Decay Solutions
原文传递
导出
摘要 A previous study is continued by investigating the Boltzmann equation for particles with quantum effects (BQE). First, the corresponding entropy identity is proved, then if the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤CΦ(x,v,0) for a constant 0<C<∞ and function Φ(x,v,t), we prove the existence and uniqueness of spatial decay solutions of the BQE within a given function space B(Φ) using fixed point theory. Moreover, if there is a continuous function F(x,v) which belongs to a function set, then there exists a mild solution f(x,v,t) of the BQE such that f ∞(x,v)= limt→∞f(x+vt,v,t)=F(x,v). A previous study is continued by investigating the Boltzmann equation for particles with quantum effects (BQE). First, the corresponding entropy identity is proved, then if the initial data f(x,v,0) satisfies 0≤f(x,v,0)≤CΦ(x,v,0) for a constant 0<C<∞ and function Φ(x,v,t), we prove the existence and uniqueness of spatial decay solutions of the BQE within a given function space B(Φ) using fixed point theory. Moreover, if there is a continuous function F(x,v) which belongs to a function set, then there exists a mild solution f(x,v,t) of the BQE such that f ∞(x,v)= limt→∞f(x+vt,v,t)=F(x,v).
出处 《Tsinghua Science and Technology》 SCIE EI CAS 2002年第3期219-222,共4页 清华大学学报(自然科学版(英文版)
基金 Supported by the Tsinghua U niversity Science Fund
关键词 Boltzmann equation quantum effects EXISTENCE UNIQUENESS entropy identity spatial decay Boltzmann equation quantum effects existence uniqueness entropy identity spatial decay
  • 相关文献

参考文献8

  • 1Xuguang Lu.A Modified Boltzmann Equation for Bose–Einstein Particles: Isotropic Solutions and Long-Time Behavior[J]. Journal of Statistical Physics . 2000 (5-6)
  • 2J. Dolbeault.Kinetic models and quantum effects: A modified Boltzmann equation for Fermi-Dirac particles[J]. Archive for Rational Mechanics and Analysis . 1994 (2)
  • 3Bellomo N,Palczewski A,Toscani G.Mathematical Topics in Nonlinear Kinetic Theory. . 1989
  • 4Cercignani C.The Boltzmann Equation and Its Applications. . 1988
  • 5Lions P L.Compactness in Boltzmann-Equation via Fourier Integral -Operators and Applications (3). Journal of Mathematics of Kyoto University . 1994
  • 6Zhang Yingkui,Lu Xuguang.Spatial decay solutions of Boltzmann equation for particles with quantum effects (I ): Long time behavior. Tsinghua Science and Technology . 2002
  • 7Lu Xuguang.Spatial decay solutions of the Boltzmann equation: Converse properties of long time limiting behavior. SIAM Journal on Mathematical Analysis . 1999
  • 8Cercignani C,Illner R,Pulvirenti M.The Mathematical Theory of Dilute Gases. . 1994

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部