摘要
Applications of robots in tasks where the robot's end-effector bears loads, such as manipulating or assembling an object, picking-and-placing loads, grinding or drilling, demand precision. One aspect that improves precision is the limitation, if not elimination, of manipulator compliance. This paper presents a manipulator compliance optimization approach for determining an optimal manipulator configuration for a given position in the robot's task space. A numerical solution for minimal compliance, a nonlinear constrained optimization problem, is presented for an arbitrary position and illustrated by an example, using a model developed on ADAMS software and using MATLAB optimization tools. Also, this paper investigates the optimal value function for robot tasks in which the tool-point is subjected to applied force as it generates an important trajectory such as in grinding processes. The optimal value function is needed for optimal configuration control.
Applications of robots in tasks where the robot's end-effector bears loads, such as manipulating or assembling an object, picking-and-placing loads, grinding or drilling, demand precision. One aspect that improves precision is the limitation, if not elimination, of manipulator compliance. This paper presents a manipulator compliance optimization approach for determining an optimal manipulator configuration for a given position in the robot's task space. A numerical solution for minimal compliance, a nonlinear constrained optimization problem, is presented for an arbitrary position and illustrated by an example, using a model developed on ADAMS software and using MATLAB optimization tools. Also, this paper investigates the optimal value function for robot tasks in which the tool-point is subjected to applied force as it generates an important trajectory such as in grinding processes. The optimal value function is needed for optimal configuration control.