期刊文献+

Variable bandwidth and one-step local M-estimator 被引量:10

Variable bandwidth and one-step local M-estimator
原文传递
导出
摘要 A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of leastsquares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M-estimators and makes them possible to cope well with spatially inhomogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the onestep local M-estimators reduce significantly the computation cost of the fully iterative M-estimators without deteriorating their performance. This fact is also illustrated via simulations. A robust version of local linear regression smoothers augmented with variable bandwidth is studied. The proposed method inherits the advantages of local polynomial regression and overcomes the shortcoming of lack of robustness of least-squares techniques. The use of variable bandwidth enhances the flexibility of the resulting local M- estimators and makes them possible to cope well with spatially inho-mogeneous curves, heteroscedastic errors and nonuniform design densities. Under appropriate regularity conditions, it is shown that the proposed estimators exist and are asymptotically normal. Based on the robust estimation equation, one-step local M-estimators are introduced to reduce computational burden. It is demonstrated that the one-step local M-estimators share the same asymptotic distributions as the fully iterative M-estimators, as long as the initial estimators are good enough. In other words, the one-step local M-estimators reduce significantly the computation cost of the fully iterative
出处 《Science China Mathematics》 SCIE 2000年第1期65-81,共17页 中国科学:数学(英文版)
关键词 LOCAL regression M-ESTIMATOR NONPARAMETRIC estimation ONE-STEP ROBUSTNESS variable bandwidth. local regression M-estimator nonparametric estimation one-step robustness variable bandwidth
  • 相关文献

参考文献5

  • 1Cleveland,W. S.Robust locally weighted regression and smoothing scatterplots, J.Amer. Statist[].Assoc.1979
  • 2Bickel,P. J.One-step Huber estimates in linear models, J[].Amer Stat Assoc.1975
  • 3Tsybakov,A. B.Robust reconstruction of functions by the local-approximation method[].Problems of Information Transmission.1986
  • 4Cox,D. D.Asympotics for M-type smoothing splines, Ann[].Statistica.1983
  • 5Fan,J.Local linear regression smoothers and their minimax efficiencies, Ann[].Statistica.1993

同被引文献42

  • 1郭娜娜,张日权.部分线性回归模型的一步局部M-估计[J].太原理工大学学报,2008,39(S2):295-298. 被引量:1
  • 2张日权,王静龙.部分线性回归模型的M-估计[J].应用数学学报,2005,28(1):151-157. 被引量:14
  • 3唐庆国,王金德.变系数模型中的一步估计法[J].中国科学(A辑),2005,35(1):23-38. 被引量:12
  • 4Chen H. Convergence Rate for Parametric Components in a Partly Linear Model[J]. Ann Statist, 1988, 16(3): 136-146.
  • 5Chen H, Shiau J G. A Two-stage Spline Smoothing Method for Partially Linear Models[J]. Statist Planning and Inference, 1991, 25(2): 187-201.
  • 6Green P J, Silverman B W. Nonparametric Regression and Generalized Linear Models: a Roughness penalty Approach[M]. Chapman and Hall, London, 1994.
  • 7Fang J, Gijbels I. Variable Bandwidth and Local Linear Regression Smoothers[J]. Ann Statist, 1992, 20(4): 2008-2036.
  • 8Fan J, Gijbels I. Local polynomial modeling and its applications[M]. London:Chapman and Hall, 1996.
  • 9Denison D, Mallick B, Smith A F M. Automatic Bayesian curve fitting[J]. J R Stat Soc B, 1998,60(4): 333-350.
  • 10Jianqing Fan,Jiancheng Jiang.Variable bandwidth and one-step local M-estimator[J]. Science in China Series A: Mathematics . 2000 (1)

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部