期刊文献+

Riesz basis, Paley-Wiener class and tempered splines 被引量:1

Riesz basis, Paley-Wiener class and tempered splines
原文传递
导出
摘要 The Marcinkiewicz-Zygmund inequality and the Bernstein inequality are established on ?2m (T, ?) ∩ L2 (?) which is the space of polynomial splines with irregularly distributed nodesT = {t j } j ∈?, where {t j }j∈? is a real sequence such that {e it ξ} j }j ∈? constitutes a Riesz basis for L2([ ?π,π]). From these results, the asymptotic relation is proved, where B π,2 denotes the set of all functions from L2( R) which can be continued to entire functions of exponential type ? ?, i.e. the classical Paley-Wiener class. The Marcinkiewicz-Zygmund inequality and the Bernstein inequality are established on which is the space of polynomial splines with irregularly distributed nodes T = where is a real sequence such that constitutes a Riesz basis for L2([ -π, π]) . From these results, the asymptotic relationis proved, where Bπ,2 denotes the set of all functions from L2(R) which can be continued to entire functions of exponential type ≤π, i.e. the classical Paley- Wiener class.
出处 《Science China Mathematics》 SCIE 2000年第10期1075-1082,共8页 中国科学:数学(英文版)
关键词 RIESZ BASIS entire functions tempered splines ASYMPTOTIC relation. Riesz basis entire functions tempered splines asymptotic relation
  • 相关文献

参考文献13

  • 1房艮孙.The asymptotic connection between approximation by cardinal splines and entire functions of exponential type[J].Chinese Science Bulletin,1996,41(4):265-270. 被引量:1
  • 2F. B. Richards,I. J. Schoenberg.Notes on spline functions IV: A cardinal spline analogue of the theorem of the brothers Markov[J]. Israel Journal of Mathematics . 1973 (1)
  • 3Fang Gensun.Approximating properties of entire functions of exponential type. Journal of Mathematical Analysis and Applications . 1996
  • 4Lybarskii Yu,Madych M R.The recovery of irregular sampled band limited functions via tempered splines. Journal of Functional Analysis . 1994
  • 5Seip,K.On the Connection between Exponential Bases and Certain Related Sequences in L2(?π, π). Journal of Functional Analysis . 1995
  • 6Devore R A,Lorentz G G.Constructive approximation. . 1993
  • 7YONG R.An Introduction to Nonharmonic Fourier Series. . 1980
  • 8Zygmund,A.Trigonometric Series, 2nd ed. . 1959
  • 9Richards F B,Schoenberg I J.Notes on spline functions IV: A cardinal spline analogue of the theorem of brothers Markov. Israel Journal of Mathematics . 1973
  • 10KorneichukN.ExactConstantsinApproximationTheory. . 1991

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部