摘要
An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.
An ab initio analytical potential energy surface called BW3 for the CIH2 reactive system is presented. The fit of this surface is based on about 1 200 ab initio energy points, computed with multi-reference configuration interaction(MRCI) and scaling external correlation (SEC) method and a very large basis set. The precision in the fit is very high. The BW3 surface could reproduce correctly the dissociation energy of H2 and HCI, and the endothermicity of the Cl + H2 abstraction reaction. For the Cl + H2 abstraction reaction, the saddle point of BW3 lies in collinear geometries, and the barrier height is 32.84 kJ/mol; for the H + CIH exchange reaction, the barrier of BW3 is also linear, with a height of 77.40 kJ/mol.