摘要
We study the behavior of some polynomial interior-point algorithms for solving random linear programming (LP) problems. We show that the average number of iterations of these algorithms, coupled with a finite termination technique, is bounded above by O( n1.5). The random LP problem is Todd’s probabilistic model with the standard Gauss distribution.
We study the behavior of some polynomial interior-point algorithms for solving random linear programming (LP) problems. We show that the average number of iterations of these algorithms, coupled with a finite termination technique, is bounded above by O( n1.5). The random LP problem is Todd's probabilistic model with the standard Gauss distribution.