期刊文献+

Strong Sperner property of the subgroup lattice of an Abelian p-group 被引量:1

Strong Sperner property of the subgroup lattice of an Abelian p-group
原文传递
导出
摘要 Letn andk be arbitrary positive integers,p a prime number and L(k n)(p) the subgroup lattice of the Abelianp-group (Z/p k ) n . Then there is a positive integerN(n,k) such that whenp N(n,k),L (k N )(p) has the strong Sperner property. Let n and k be arbitrary positive integers, p a prime number and L(kn)(p) the subgroup lattice of the Abelian p-group ( /pk )n. Then there is a positive integer N( n, k) such that when p > N( n, k), L(kn)(p) has the strong Sperner property.
作者 王军 王毅
出处 《Science China Mathematics》 SCIE 2000年第7期693-702,共10页 中国科学:数学(英文版)
关键词 POSET SUBGROUP LATTICE Sperner property. poset subgroup lattice Sperner property
  • 相关文献

参考文献5

  • 1Jun Wang.Proof of a conjecture on the Sperner property of the subgroup lattice of an abelianp-group[J].Annals of Combinatorics.1998(1)
  • 2Emanuel Sperner.Ein Satz über Untermengen einer endlichen Menge[J].Mathematische Zeitschrift.1928(1)
  • 3Stanley,R. P.Weyl groups, the hard Lefschets theorem and the Sperner property, SIAM J.Alg. Disc[].Methods.1980
  • 4Butler,L. M.A unimodality result in the enumeration of subgroups of a finite abelian group, Proc Amer[].Mathematical Social Sciences.1987
  • 5Griggs,J. R.On ehains and Sperner k-families in ranked posets, J.Combin. Theory, Ser[].A.1980

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部