摘要
Micro-indention and finite element method (FEM) are used to study the stress at the interface between diamond-like carbon (DLC) film and mercury cadmium telluride (MCT) substrate, with different coating thickness, deposition temperature and indention load. The FEM simulation results show that when Young's modulus ratio of the coating to the substrate Ec/Es<1, Whether a load was applied or not, the interfacial maximum shear stress decreased with the increase of coating thickness. The Von mises stress always concentrated at the interface. The maximum value of the stress locates at the edge of the interface for thin film (h1/h2<0. l), however, it will locate at the center of the interface while the film become thick (h1/h2>0. 1 ). The stress also increased with raising the film deposition temperature, and the temperature affected the strain obviously. When a load was applied, the stress would concentrate where the load was applied, and the stress value is much larger than that of unloading. When the film stress exceeds the film fracture strength, film cracking occurs at the location where load is applied.
Micro-indention and finite element method (FEM) are used to study the stress at the interface between diamond-like carbon (DLC) film and mercury cadmium telluride (MCT) substrate, with different coating thickness, deposition temperature and indention load. The FEM simulation results show that when Young's modulus ratio of the coating to the substrate Ec/Es<1, Whether a load was applied or not, the interfacial maximum shear stress decreased with the increase of coating thickness. The Von mises stress always concentrated at the interface. The maximum value of the stress locates at the edge of the interface for thin film (h1/h2<0. l), however, it will locate at the center of the interface while the film become thick (h1/h2>0. 1 ). The stress also increased with raising the film deposition temperature, and the temperature affected the strain obviously. When a load was applied, the stress would concentrate where the load was applied, and the stress value is much larger than that of unloading. When the film stress exceeds the film fracture strength, film cracking occurs at the location where load is applied.