期刊文献+

A bound for Wilson' s general theorem

A bound for Wilson' s general theorem
原文传递
导出
摘要 Given any setK of positive integers and positive integer λ, letc(K,λ) denote the smallest integer such that v ∈B(K, λ) for every integerv≥c(K, λ) that satisfies the congruencesλv(v-1) ≡ 0 (modβ(K)) and λ (v-1)=≡ (modα(K)). LetK 0 be an equivalent set ofK, k andk* be the smallest and the largest integers inK 0. We prove that c(K, λ) ≤exp expQ 0 where $$Q_0 = \max \left\{ {2^{(2p(K_0 )^2 - k + k^2 \log _4 k)p(K_0 )^4 } ,(k^{k^2 } 4^{2y - k - 2} )^{(\begin{array}{*{20}c} y \\ 2 \\ \end{array} )} } \right\},$$ $p(K_0 ) = \prod\nolimits_{l \in K_0 } l $ andy=k*+k(k?1)+1. Given any set K of positive integers and positive integer λ, let c( K, λ) denote the smallest integer such that v∈B( K, λ) for every integer v>>c( K, λ) that satisfies the congruences λv( v-1)≡0 (modβ (K)) and λ( v- 1)≡0 (modα(K)). Let K0 be an equivalent set of K, k and k* be the smallest and the largest integers in K0. We prove that c( K,λ)≤exp
作者 常彦勋
机构地区 不详
出处 《Science China Mathematics》 SCIE 2000年第2期128-140,共13页 中国科学:数学(英文版)
基金 This work was supported by the National Natural Science Foundation of China (Grant No.19701002)and Hou Yingdong Foundation.It was also partially supported by Climbing Foundation of Northern Jiaotong University.
关键词 Wilson’ general theorem pairwise balanced design PBD-closed Wilson’s general theorem pairwise balanced design PBD-closed.
  • 相关文献

参考文献5

  • 1Vitek,Y.Bounds for a linear diophantine problem of Frobenius, J[].London Mathematical Society.1975
  • 2Chang Yanxun,A bound for Wilson’s theorem II,J.Combin[].Designs.1996
  • 3Chang Yanxun,A bound for Wilson s theorem Ⅲ,J.Combin[].Designs.1996
  • 4Wilson,R.M.An existence theory for pairwise balaneed designs Ⅲ,J.Combin.Theory,Ser[].A.1975
  • 5Zhu Lie.Some recent development on BIBD and related designs[].Discrete Mathematics.1993

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部