摘要
The water potential (Ψ) daily courses of 9 woody species from Cerrado vegetation in different weather conditions during wet season were observed and analyzed. The adjusting strategies of 9 species could be divided into 3 groups according to Cluster Analysis and based on the data observed on the January 18, March 20 and April 6. The Ψ values of the first group, which included 2 species, were maintained at the higher level consistently. The Ψ values of the second group, which included 5 species, were intermediate level. The Ψ values of the third group, which included 2 species, were kept in the lower level. The Ψ values of all species always kept pace with the weather condition, especially water condition. During the clear day only one Ψ value peak for all species occurred at midday (12∶30–13∶30). When the overcast or raining occurred for a short period, the fluctuation of Ψ values would appear after about 15–30 min responding to the change of weather condition. Even in the same group under the same external circumstance, there was a clear variation of the leaf Ψ values among different species, which showed that the strategy diversity for plant to balance water relation. From January to April, the Ψ values of 9 species reduced in response to the drought condition. The species with the lower values of water saturation deficiency at turgid loss point (W sdtlp) the osmotic potential at saturation (πsat), the osmotic potential at turgid lose point (πtip) or lower predawn water potential (Ψpd) usually had the lower Ψ values at midday. The mechanism of water balance controlled by many systems has been assumed.
The water potential (Ψ) daily courses of 9 woody species from Cerrado vegetation in different weather conditions during wet season were observed and analyzed. The adjusting strategies of 9 species could be divided into 3 groups according to Cluster Analysis and based on the data observed on the January 18, March 20 and April 6. The Ψ values of the first group, which included 2 species, were maintained at the higher level consistently. The Ψ values of the second group, which included 5 species, were intermediate level. The Ψ values of the third group, which included 2 species, were kept in the lower level. The Ψ values of all species always kept pace with the weather condition, especially water condition. During the clear day only one Ψ value peak for all species occurred at midday (12∶30–13∶30). When the overcast or raining occurred for a short period, the fluctuation of Ψ values would appear after about 15–30 min responding to the change of weather condition. Even in the same group under the same external circumstance, there was a clear variation of the leaf Ψ values among different species, which showed that the strategy diversity for plant to balance water relation. From January to April, the Ψ values of 9 species reduced in response to the drought condition. The species with the lower values of water saturation deficiency at turgid loss point (W sdtlp) the osmotic potential at saturation (πsat), the osmotic potential at turgid lose point (πtip) or lower predawn water potential (Ψpd) usually had the lower Ψ values at midday. The mechanism of water balance controlled by many systems has been assumed.