期刊文献+

Al_(80)Ni_6Y_8Co_4Cu_2 GLASS ALLOYS CONTAINING NANOSCALEPARTICLES BY ISOTHERMAL ANNEALING OR QUENCHING 被引量:16

Al_(80)Ni_6Y_8Co_4Cu_2 GLASS ALLOYS CONTAINING NANOSCALE PARTICLES BY ISOTHERMAL ANNEALING OR QUENCHING
下载PDF
导出
摘要 Al80Ni6 Y8 Co4 Cu2 amorphous ribbons were isothermally annealed and a mixed structure consisting of α-Al particle with a size of less than 15nm and Al3Ni compound with a size of about 30nm was obtained. The crystallization kinetics of Al80Ni6 Y8 Co4 Cu2 amorphous alloy shows that the precipitation of α-Al particles is the growth process controlled by diffusion of the solute elements rejected from the growing crystals. By quenching at different cooling rates, a mixed structure consisting of nanoscale α-Al particles and the remaining glass matrix or structure consisting of nanoscale particle (Al phase or Al3Ni compound) with a size of about 100nm was formed. The addition of Co elements and Cu elements to Al-Ni-Y alloy systems increases the glass formation ability of the alloy and the thermal stability of the supercooled liquid region against crystallization, which results from significant difference of atomic size, strong bonding nature among constituent elements and the low diffisivity of the solute elements due to the concentration gradient in the growing front of crystals. Al80Ni6 Y8 Co4 Cu2 amorphous ribbons were isothermally annealed and a mixed structure consisting of α-Al particle with a size of less than 15nm and Al3Ni compound with a size of about 30nm was obtained. The crystallization kinetics of Al80Ni6 Y8 Co4 Cu2 amorphous alloy shows that the precipitation of α-Al particles is the growth process controlled by diffusion of the solute elements rejected from the growing crystals. By quenching at different cooling rates, a mixed structure consisting of nanoscale α-Al particles and the remaining glass matrix or structure consisting of nanoscale particle (Al phase or Al3Ni compound) with a size of about 100nm was formed. The addition of Co elements and Cu elements to Al-Ni-Y alloy systems increases the glass formation ability of the alloy and the thermal stability of the supercooled liquid region against crystallization, which results from significant difference of atomic size, strong bonding nature among constituent elements and the low diffisivity of the solute elements due to the concentration gradient in the growing front of crystals.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第5期1039-1046,共8页 金属学报(英文版)
关键词 a mixed structure nanoscale particle isothermal annealing cooling rate concentration gradient α-Al particle Al3Ni compound a mixed structure, nanoscale particle, isothermal annealing, cooling rate, concentration gradient, α-Al particle, Al3Ni compound
  • 相关文献

参考文献1

  • 1N. Merk,D. G. Morris,M. A. Morris.Ductilization and embrittlement during the crystallization of Ni-Ti-B glasses[J].Journal of Materials Science.1988(11)

同被引文献43

引证文献16

二级引证文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部