期刊文献+

NUMERICAL SIMULATION OF MECHANICAL BEHAVIOR DURING LOCAL POSTWELD HEAT TREATMENT 被引量:2

NUMERICAL SIMULATION OF MECHANICAL BEHAVIOR DURING LOCAL POSTWELD HEAT TREATMENT
下载PDF
导出
摘要 Local postweld heat treatment (PWHT)is usually performed when it is impractical to heat treat the whole vessel in a furnace, Many factors have an influence on PWHT procedures, such as size of the pipe,heated widths, insulation conditions, heating rates soak temperatures and hold times, material composition etc,. However up to now the influences these factors have on PWHT are not very clearly understood and different criteria for sizing the parameters can be found in different codes. This study provides a direct method to assess the effectiveness of local PWHT.An axisymmetrical model was used based on the thermal-visco-elastic-plastic Finite Element Method with the consideration of creep phenomena. By using this method both temperature and stress distributions can be simulated during whole local PWHT history. The computation results of temperature distributions and the strain histaries during local PWHT are compared with the experiments, and good agreements are obtained, Investigations show that the thermal stresses induced by local PWHT are much affected by creep behavior and the changes of Young's Modulus. The study of stress relief history shows that the stresses decrease quickly in the heating stage, then decrease slowly according to creep law in the hold stage and then studdenly increase when the cooling stage starts. The study shows the possibility that through a series of computations the effects of many factors can be assessed and the optimum parnmeters can be found. Compared with the heated widths based apon some applicable codes, it is found that a heated area of 2.5 on either side of the weld seems more reasonable. Local postweld heat treatment (PWHT)is usually performed when it is impractical to heat treat the whole vessel in a furnace, Many factors have an influence on PWHT procedures, such as size of the pipe,heated widths, insulation conditions, heating rates soak temperatures and hold times, material composition etc,. However up to now the influences these factors have on PWHT are not very clearly understood and different criteria for sizing the parameters can be found in different codes. This study provides a direct method to assess the effectiveness of local PWHT.An axisymmetrical model was used based on the thermal-visco-elastic-plastic Finite Element Method with the consideration of creep phenomena. By using this method both temperature and stress distributions can be simulated during whole local PWHT history. The computation results of temperature distributions and the strain histaries during local PWHT are compared with the experiments, and good agreements are obtained, Investigations show that the thermal stresses induced by local PWHT are much affected by creep behavior and the changes of Young's Modulus. The study of stress relief history shows that the stresses decrease quickly in the heating stage, then decrease slowly according to creep law in the hold stage and then studdenly increase when the cooling stage starts. The study shows the possibility that through a series of computations the effects of many factors can be assessed and the optimum parnmeters can be found. Compared with the heated widths based apon some applicable codes, it is found that a heated area of 2.5 on either side of the weld seems more reasonable.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期722-727,共6页 金属学报(英文版)
关键词 postweld heat treatment residual stress creep FEM postweld heat treatment, residual stress, creep,FEM
  • 相关文献

同被引文献3

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部