期刊文献+

NUMERICAL ANALYSIS OF DIELECTRIC RESPONSE IN RELAXOR FERROELECTRICS

NUMERICAL ANALYSIS OF DIELECTRIC RESPONSE IN RELAXOR FERROELECTRICS
下载PDF
导出
摘要 The dielectric response of complex perovskite relaxor ferrolectrics Pb(Mg1/3Nb2/3) O3 with respect to temperature and frequency was carefully measured. Using a normalized method of the 'universal' many-body theory, the relaxation process was analyzed around the temperature of dielectric absorption maximum. There is no structural phase transition near this temperature and the behavior is closely like that of a polar dipole medium. The functional relationship about frequency and temperature of dielectric pormittivity maximum was also fitted to discuss the dynamic behavior of polar microregion. It is confirmed that a new power exponential Arrhenius relation is better to characterize the relaxation behavior than the Vogel-Fulcher and Debye relations. Based on the polarization theory of polar dipoles, we analyzed the relaxation mechanism of ferroelectric microdomains of relaxor ferroelectrics, and get an ideal distribution function of relaxation time. Consequently, a simulated dielectric response dependence on temperature and frequencies can be expressed, which is well coincided with experiment results. The dielectric response of complex perovskite relaxor ferrolectrics Pb(Mg1/3Nb2/3) O3 with respect to temperature and frequency was carefully measured. Using a normalized method of the 'universal' many-body theory, the relaxation process was analyzed around the temperature of dielectric absorption maximum. There is no structural phase transition near this temperature and the behavior is closely like that of a polar dipole medium. The functional relationship about frequency and temperature of dielectric pormittivity maximum was also fitted to discuss the dynamic behavior of polar microregion. It is confirmed that a new power exponential Arrhenius relation is better to characterize the relaxation behavior than the Vogel-Fulcher and Debye relations. Based on the polarization theory of polar dipoles, we analyzed the relaxation mechanism of ferroelectric microdomains of relaxor ferroelectrics, and get an ideal distribution function of relaxation time. Consequently, a simulated dielectric response dependence on temperature and frequencies can be expressed, which is well coincided with experiment results.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第2期757-763,共7页 金属学报(英文版)
关键词 relaxor ferroelectrics dielectric response 'universal' many-body theory ferroelectric microdomain relaxor ferroelectrics, dielectric response, 'universal' many-body theory, ferroelectric microdomain
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部