摘要
There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100's to > 1 000 tonne gold production. The deposit classes are: (1) erogenic gold; (2) Carlin and Carlin-like gold deposits; (3) epithermal gold-silver deposits; (4) copper-gold porphyry deposits; (5) iron-oxide copper-gold deposits; and (6) gold-rich volcanic hosted massive sul-fide (VMS) to sedimentary exhalative (SEDEX) deposits. This classification is based on ore and alteration mineral assemblages; ore and alteration metal budgets; ore fluid pressure(s) and compositions; crustal depth or depth ranges of formation; relationship to structures and/or magmatic intrusions at a variety of scales; and relationship to the P-T-t evolution of the host terrane. These classes reflect distinct geodynamic settings. Orogenic gold deposits are generated at mid-crustal (4-16 km) levels proximal to terrane boundaries, in transpressional subduction-accretion complexes of Cordilleran style erogenic belts; other orogenic gold provinces form inboard by delamina-tion of mantle lithosphere, or plume impingement. Carlin and Carlin-like gold deposits develop at shallow crustal levels (< 4 km) in extensional convergent margin continental arcs or back arcs; some provinces may involve asthenosphere plume impingement on the base of the lithosphere. Epithermal gold and copper-gold porphyry deposits are sited at shallow crustal levels in continental margin or intraoceanic arcs. Iron oxide copper-gold deposits form at mid to shallow crustal levels; they are associated with extensional intracratonic anorogenic magmatism. Proterozoic examples are sited at the transition from thick refractory Archean mantle lithosphere to thinner Proterozoic mantle lithosphere. Gold-rich VMS deposits are hydrothermal accumulations on or near the sea-floor in continental or intraoceanic back arcs.The compressional tectonics of orogenic gold deposits is generated by terrane accretion; high heat flow stems from crustal thickening, delamination of overthickened mantle lithosphere inducing advection of hot asthenosphere, or asthenosphere plume impingement. Ore fluids advect at lithostatic pressures. The extensional settings of Carlin, epithermal, and copper-gold porphyry deposits result from slab rollback driven by negative buoyancy of the subducting plate, and associated induced convection in asthenosphere below the over-riding lithospheric plate. Extension thins the lithosphere, advecting asthenosphere heat, promotes advection of mantle lithosphere and crustal magmas to shallow crustal levels, and enhances hydraulic conductivity. Siting of some copper-gold porphyry deposits is controlled by arc parallel or orthogonal structures that in turn reflect deflections or windows in the slab. Ore fluids in Carlin and epithermal deposits were at near hydrostatic pressures, with unconstrained magmatic fluid input, whereas ore fluids generating porphyry copper-gold deposits were initially magmatic and lithostatic, evolving to hydrostatic pressures. Fertilization of previously depleted sub-arc mantle lithosphere by fluids or melts from the subducting plate, or incompatible element enriched asthenosphere plumes, is likely a factor in generation of these gold deposits. Iron oxide copper-gold deposits involve prior fertilization of Ar-chean mantle lithosphere by incompatible element enriched asthenospheric plume liquids, and subsequent intracontinental anorogenic magmatism driven by decompressional extension from far-field plate forces. Halogen rich mantle lithosphere and crustal magmas likely are the causative intrusions for the deposits, with a deep crustal proximal to shallow crustal distal association. Gold-rich VMS deposits develop in extensional geodynamic settings, where thinned lithosphere extension drives high heat flow and enhanced hydraulic conductivity, as for epithermal deposits. Ore fluids induced hydrostatic convection of modified seawater, with unconstrained magmatic input. Some gold-rich VMS deposits with an epithermal metal budget may be submarine counterparts of ter
There are six distinct classes of gold deposits, each represented by metallogenic provinces, having 100’s to > 1 000 tonne gold production. The deposit classes are: (1) erogenic gold; (2) Carlin and Carlin-like gold deposits; (3) epithermal gold-silver deposits; (4) copper-gold porphyry deposits; (5) iron-oxide copper-gold deposits; and (6) gold-rich volcanic hosted massive sul-fide (VMS) to sedimentary exhalative (SEDEX) deposits. This classification is based on ore and alteration mineral assemblages; ore and alteration metal budgets; ore fluid pressure(s) and compositions; crustal depth or depth ranges of formation; relationship to structures and/or magmatic intrusions at a variety of scales; and relationship to the P-T-t evolution of the host terrane. These classes reflect distinct geodynamic settings. Orogenic gold deposits are generated at mid-crustal (4-16 km) levels proximal to terrane boundaries, in transpressional subduction-accretion complexes of Cordilleran style erogenic belts; other