摘要
The two-dimensional classical Hardy space Hp(T×T) on the bidisc are introduced, and it is shown that the maximal operator of the (C,α,β) means of a distribution is bounded from the space Hp(T×T) to Lp(T2) (1/(α+1), 1/(β+1)<p≤∞), and is of weak type (H 1 # (T×T), L1(T2)), where the Hardy space H 1 # (T×T) is defined by the hybrid maximal function. As a consequence we obtain that the (C, α, β) means of a function f∈H 1 # (T×T)?LlogL(T 2) convergs a. e. to the function in question. Moreover, we prove that the (C, α, β) means are uniformly bounded on the spaces Hp(T×T) whenever 1/(α+1), 1(β+1)<p<∞. Thus, in case f∈Hp(T×T), the (C, α, β) means convergs to f in Hp(T×T) norm whenever (1/(α+1), 1/(β+1)<p<∞). The same results are proved for the conjugate (C, α, β) means, too.
The two-dimensional classical Hardy space Hp(T×T) on the bidisc are introduced, and it is shown that the maximal operator of the (C,α,β) means of a distribution is bounded from the space Hp(T×T) to Lp(T2) (1/(α+1), 1/(β+1)<p≤∞), and is of weak type (H 1 # (T×T), L1(T2)), where the Hardy space H 1 # (T×T) is defined by the hybrid maximal function. As a consequence we obtain that the (C, α, β) means of a function f∈H 1 # (T×T)?LlogL(T 2) convergs a. e. to the function in question. Moreover, we prove that the (C, α, β) means are uniformly bounded on the spaces Hp(T×T) whenever 1/(α+1), 1(β+1)<p<∞. Thus, in case f∈Hp(T×T), the (C, α, β) means convergs to f in Hp(T×T) norm whenever (1/(α+1), 1/(β+1)<p<∞). The same results are proved for the conjugate (C, α, β) means, too.