摘要
In this paper positive definite matrix functionals defined on a set of square integrable matrix valued functions are introduced and studied. The best approximation problem is solved in terms of matrix Fourier series. Riemann-Lebesgue matrix property and a Bessel-Parseval matrix inequality are given.
In this paper positive definite matrix functionals defined on a set of square integrable matrix valued functions are introduced and studied. The best approximation problem is solved in terms of matrix Fourier series. Riemann-Lebesgue matrix property and a Bessel-Parseval matrix inequality are given.