摘要
An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.
An efficient discrete singular convolution (DSC) method is introduced to the numerical solutions of incompressible Euler and Navier-Stokes equations with periodic boundary conditions. Two numerical tests of two-dimensional Navier-Stokes equations with periodic boundary conditions and Euler equations for doubly periodic shear layer flows are carried out by using the DSC method for spatial derivatives and fourth-order Runge-Kutta method for time advancement, respectively. The computational results show that the DSC method is efficient and robust for solving tho problems of incompressible flows, and has the potential of being extended to numerically solve much broader problems in fluid dynamics.
基金
The project supported by the National Natural Science Foundation of China(No.19902010)