期刊文献+

LINEAR THEORY OF GRAVITY WAVES ON A VOIGT VISCOELASTIC MEDIUM 被引量:1

LINEAR THEORY OF GRAVITY WAVES ON A VOIGT VISCOELASTIC MEDIUM
下载PDF
导出
摘要 Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper.Three dimensionless parameters,the dimensionless viscoelastic parameter (?),the dimensionless wave number and the dimensionless sur- face tension are introduced.A dimensionless characteristic equation describing the waves is derived.This is a sixth order complex algebraic equation which is solved to give the complex dispersion relation.Based on the numerical solution, two critical values of (?),(?)_A=0.607 and (?)_R=2.380,which represent the appearance of the cutoff region and the disappearance of the strong dispersion region,are found.The effects of (?) on the characteristic equation and the properties of the waves are discussed. Linear surface gravity waves on a semi-infinite incompressible Voigt medium are studied in this paper.Three dimensionless parameters,the dimensionless viscoelastic parameter (?),the dimensionless wave number and the dimensionless sur- face tension are introduced.A dimensionless characteristic equation describing the waves is derived.This is a sixth order complex algebraic equation which is solved to give the complex dispersion relation.Based on the numerical solution, two critical values of (?),(?)_A=0.607 and (?)_R=2.380,which represent the appearance of the cutoff region and the disappearance of the strong dispersion region,are found.The effects of (?) on the characteristic equation and the properties of the waves are discussed.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2000年第4期301-308,共8页 力学学报(英文版)
基金 The project supported by the National Natural Science Foundation of China(59709006)
关键词 Voigt viscoelastic medium linear gravity wave dispersion relation Voigt viscoelastic medium linear gravity wave dispersion relation
  • 相关文献

参考文献15

二级参考文献23

  • 1Gu X M,J Fluid Mech,1987年,183卷,543页
  • 2梅显中,Waves on Beaches,1972年
  • 3Gade, H. G., 1958. Effects of a non-rigid impermeable bottom on plane surface waves in shallow water, J. Mar. Res., 16, 61 - 82.
  • 4Dalrymple, R. A. and Liu, P. L-F. ,1978. Waves over soft mud: A two-layer fluid model, J. Phys. Oceanogr., 8 (6): 1121 - 1131.
  • 5Mallard, W. W. and Dalrymple, R. A., 1977. Water waves propagating over a deformable bottom, Proc. 9th Conf.on Offshore Technology, 141 - 146.
  • 6Yamamoto, T. and Takahashi, S., 1985. Wave damping by soil motion, J. Waterw., Port, Coastal and Ocean Eng., ASCE, 111(1): 62-77.
  • 7Hsiao, S. V. and Shemdin, O. H., 1980. Interaction of ocean waves with a soft bottom, J. Phys. Oceanogr., 10 (4) : 605 - 610.
  • 8Maa, J. P.-Y. and Mehta, A. J., 1990. Soft mud response to water waves, J. Waterw., Port, Coastal and Ocean Eng., ASCE, 116(5) : 634 - 650.
  • 9Tsuruya, H., Nakano, S. and Takahama, J., 1987. Investigation between stuface waves and a moltilayered mud bed,Rep. of the Port and Harbor Res. Inst., Ministry of Transport of Japan, 26(5): 141 - 173. (in Japanese).
  • 10JIANG Qin, 1996. Study on rheological properties and mass trosport of soft mud under waves, Ph.D. Thesis, University of Tokyo.

共引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部