摘要
Destruction of trichloro ethylene (C 2HCl 3) by pulsed corona discharge reactor packed with alumina pellets and in absence of packing was investigated. Higher conversion of C 2HCl 3 was observed in presence of alumina than in absence of packing. Furthermore CO/CO 2 ratio in the by products was found to shift in favor of CO 2 by alumina compared with absence of packing. Influence of catalyst porosity on C 2HCl 3 destruction and on by product ozone generation during the processing was also studied. Both alumina Ⅰ and alumina Ⅱ show similar improvement in C 2HCl 3 destruction. However, more important observation was that alumina Ⅰ produces higher by product ozone, while, alumina Ⅱ produces lower by product ozone, than in the case of no packing. The catalyst porosity effect was also investigated for destruction of toluene and was found to be similar. Intermediates of C 2HCl 3 destruction, as identified by GC MS, were COCl 2, CH 2Cl 2CHCl 3, CCl 4 and C 2HCl 5. In presence of alumina the amount of these intermediates was much reduced, indicating the catalytic function of alumina.
Destruction of trichloro ethylene (C 2HCl 3) by pulsed corona discharge reactor packed with alumina pellets and in absence of packing was investigated. Higher conversion of C 2HCl 3 was observed in presence of alumina than in absence of packing. Furthermore CO/CO 2 ratio in the by products was found to shift in favor of CO 2 by alumina compared with absence of packing. Influence of catalyst porosity on C 2HCl 3 destruction and on by product ozone generation during the processing was also studied. Both alumina Ⅰ and alumina Ⅱ show similar improvement in C 2HCl 3 destruction. However, more important observation was that alumina Ⅰ produces higher by product ozone, while, alumina Ⅱ produces lower by product ozone, than in the case of no packing. The catalyst porosity effect was also investigated for destruction of toluene and was found to be similar. Intermediates of C 2HCl 3 destruction, as identified by GC MS, were COCl 2, CH 2Cl 2CHCl 3, CCl 4 and C 2HCl 5. In presence of alumina the amount of these intermediates was much reduced, indicating the catalytic function of alumina.