摘要
Garnet is an important rock forming mineral of high pressure and ultrahigh pressure metamorphic rocks. Its popular isomorphism complicates its chemical composition and crystal structure. The selected area electron diffraction (SAED) and the high resolution electron microscopy (HREM) are used in this work to study the microstructures and ultrastructures of garnets in the jadeite quartzite from Dabie Mountains, China. The microstructures of the garnet occur mainly as free dislocations, dislocation walls, stacking faults, dislocation networks and sub grain boundaries. The dislocation density is ρ=n ×10 8/cm 2 ( n =1.7—7.5) and the deformation mechanism is the dislocation glide and dynamic recovery. The superstructures of the garnet crystal revealed by HREM occur mainly as dislocations, faults, domain structures and lattice deformations, indicating the strong stress during the formation of the jadeite quartzite.
Garnet is an important rock forming mineral of high pressure and ultrahigh pressure metamorphic rocks. Its popular isomorphism complicates its chemical composition and crystal structure. The selected area electron diffraction (SAED) and the high resolution electron microscopy (HREM) are used in this work to study the microstructures and ultrastructures of garnets in the jadeite quartzite from Dabie Mountains, China. The microstructures of the garnet occur mainly as free dislocations, dislocation walls, stacking faults, dislocation networks and sub grain boundaries. The dislocation density is ρ=n ×10 8/cm 2 ( n =1.7—7.5) and the deformation mechanism is the dislocation glide and dynamic recovery. The superstructures of the garnet crystal revealed by HREM occur mainly as dislocations, faults, domain structures and lattice deformations, indicating the strong stress during the formation of the jadeite quartzite.
基金
This paperis supported by the National Natural Science Foundation of China( No.49872 0 69)