期刊文献+

关于完全非线性函数的非线性度的界 被引量:4

On Nonlinearity Bounds of Perfect Nonlinear Functions
原文传递
导出
摘要 非线性函数在编码和密码领域中扮演着非常重要的角色,衡量函数的非线性性质很重要。非线性度和差分概率是衡量函数非线性性质的重要指标,差分概率均匀的函数称为具有完全非线性的函数。文中改进了Carlet和Ding所给出的完全非线性函数的非线性度的上界和下界,提出了更好的界的优化问题模型。 Nonlinear functions play a significant role in coding and cryptography,and is critical to evaluate how nonlinear a function is. Nonlinearity and differential probability are both of importance in quantifying the nonlinear extent of a function. A function with uniform differential probability is said to have perfect nonlinearity or to be perfectly nonlinear. In this manuscript,the upper and lower bounds of nonlinearity of perfectly nonlinear functions given by Carlet and Ding are improved,and an optimum question model for better nonlinearity bounds is proposed.
出处 《信息安全与通信保密》 2011年第11期66-67,共2页 Information Security and Communications Privacy
关键词 非线性度 差分概率 完全非线性 Samuelson不等式 nonlinearity differential probability perfectly nonlinear Samuelson inequality
  • 相关文献

参考文献7

  • 1BIHAM E, SHAMIR A. Differential Cryptanalysis of DES-like Cryptosystems[J]. J. Cryptology, 1991, 4 (1): 3-72.
  • 2张玉安,冯登国.欧洲流密码加密标准的竞评[J].信息安全与通信保密,2003(3):38-41. 被引量:8
  • 3MATSUI M. Linear Cryptanalysis Method for DES Cipher[C]. Advances in Cryptology-EUROCRYPT'93. Berlin: Springer, 1994: 386-397.
  • 4龚晶,邓元庆.简评NESSIE候选分组加密算法[J].信息安全与通信保密,2002,24(5):36-39. 被引量:4
  • 5CARLET C, DING C. Highly Nonlinear Mappings[J]. J. Complexity, 2004(20): 05-244.
  • 6CUSICK T W, DING C, RENVALL A. Stream Ciphers and Number Theory[C]. Amsterdam: North-Holland Mathematical Library, 1998.
  • 7SAMUELSON P A. How Deviant Can You Be?[J]. Journal of the American Statistical Association, 1968(63): 1522-1525.

二级参考文献7

  • 1罗启彬,张健.流密码的现状和发展[J].信息与电子工程,2006,4(1):75-80. 被引量:18
  • 2刘运毅,覃团发,倪皖荪,张淑仪.简评ECRYPT的候选流密码算法(下)[J].信息安全与通信保密,2006,28(9):17-21. 被引量:7
  • 3[2]Douglas R. Stinson. CRYPTOGRAPHY Theory and Practice. CRC Press LLC.1995
  • 4[3]NESSIE Project. Security Evaluation of NESSIE First Phase.
  • 5[4]NESSIE Project. Report on the Performance Evaluation of NESSIE Candidates 1.
  • 6[5]NESSIE Project. Selection of Primitives. 2001
  • 7[6]NESSIE. http:∥www.cryptonessie.org. 2000

共引文献8

同被引文献30

  • 1温巧燕,张劼,钮心忻,杨义先.现代密码学中的布尔函数研究综述[J].电信科学,2004,20(12):43-46. 被引量:9
  • 2LI W W, WANG Z, HUANG J L. The E-derivative of Boolean Functions and Its Application in the Fault Detection and Cryptographic System[J]. Kybernetes, 2011, 40(5): 905-911.
  • 3KLIMOV A, SHAMIR A. Cryptographic Application of T-functions[C]//The Ninth Workshop on Selected Areas in Cryptography-SAC 2003. Berlin: Springer-Verlag, 2004: 248-261.
  • 4ZHANG Wenying, WU Chuan-Kun. The Algebraic Normal Form, Linear Complexity and k-Error Complexity of Single-Cycle T-functions[C]//The fourth International Conference on Sequences and Their Applications 2006- SETA2006. Berlin: Springer-Verlag, 2006: 391-401.
  • 5LIDL R, NIEDERREITER H. Finite Fields[M].[s.l.]: Addison-Wesley Publishing Company, 1983 : 398-399.
  • 6KUROSAWA K, SATO F, SAKATA T, et al. A Relationship Between Linear Complexity and k-error Linear Complexity[J]. IEEE Transactions on Information Theory, 2000, 46(2): 694-698.
  • 7GAMES R A, CHAN A H. A Fast Algorithm for Determining the Complexity of a Binary Seqence with Period 2"[J]. IEEE Transactions on Information Theory, 1983, 29(1): 144-146.
  • 8RUEPPEL R A. Analysis and Design of Stream Ciphers[M]. Berlin: Springer-Verlag, 1986: 40-42.
  • 9ADAMS C M, TRVARES S E. Generating and Counting Binary Bent Sequences [ J ]. IEEE Transactions on Infor- mation Theory, 1990,36 (05) : 1170-1173.
  • 10WEBSTER A F. Plaintext/Ciphertext Bit Dependencies in Cryptographic System[ D ]. Ontario, Canada: Department of Electrical Engeneering, Queen' s University, 1985.

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部