期刊文献+

支持向量数据描述鉴别分析

Support vector data description discriminant analysis
下载PDF
导出
摘要 结合支持向量机(Support vector machine,SVM)最大类间间隔和支持向量数据描述(Support vector data description,SVDD)最小类内体积,提出支持向量数据描述鉴别分析(Support vector data description discriminant analysis,SVDDDA)。SVDDDA构造两大小同心超球,小超球包含正类样本,大超球排除负类样本,最大化两超球间隔,同时压缩正负类所处特征空间体积,利用样本距超球心距离定义了投影坐标。SVDDDA不仅能够获取类间鉴别信息,还能够获取类内散布信息。最后,通过人脸表情识别试验验证了该算法的有效性。 Based on the maximum inter-class margin of Support Vector Machine(SVM) and the minimum intra-class volume of Support Vector Data Description(SVDD),a discriminant algorithm is proposed,named Support Vector Data Description Discriminant Analysis(SVDDDA).This algorithm establishes two different concentric hyperspheres.The positive class samples are packed in the small hypersphere and the negative class samples are excluded from the large hepersphere.The objective function of the model maximizes the inter-class margin and minimizes the volume of the small hypersphere simultaneously.The projection coordinates are defined by the distance between the sample and the center of the hyperspheres.SVDDDA can preserve the inter-class discriminant information and intra-class scatter distribution.Results of experiment on public facial expression database demonstrate the efficiency of the proposed method.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第6期1709-1713,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60673190) 常州工学院校级课题(YN1010 YN1030)
关键词 计算机应用 支持向量鉴别分析 支持向量机 支持向量数据描述 computer application support vector discriminant analysis support vector machine support vector data description
  • 相关文献

参考文献9

  • 1Yan S C, Xu D, Zhang B,et al. Graph embedding and extensions: a general framework for dimensionality reduction[J]. IEEE Trans on Pattern Analysisand Machine Intelligence, 2007,29 (1) : 40-51.
  • 2Song F X, Zhang D, Mei D Y, et al. A multiple maximum scatter difference discriminant criterion for facial feature extraction[J]. IEEE Trans on Sys- tems, Man, and Cybernetics-Part B: Cybernetics, 2007,37(6),1599-1606.
  • 3宋枫溪,张大鹏,杨静宇,高秀梅.基于最大散度差鉴别准则的自适应分类算法[J].自动化学报,2006,32(4):541-549. 被引量:17
  • 4Lu J, Plataniotis K N, Venetsanopoulos A. Face recognition using kernel direct discriminant analysis algorithmsFJ~. IEEE Trans on Nerual Networks, 2003,14(1) ,117-126.
  • 5张宝昌,陈熙霖,山世光,高文.基于支持向量的Kernel判别分析[J].计算机学报,2006,29(12):2143-2150. 被引量:10
  • 6应自炉,唐京海,李景文,张有为.支持向量鉴别分析及在人脸表情识别中的应用[J].电子学报,2008,36(4):725-730. 被引量:21
  • 7Tax D M J, Duin R P W. Support vector data description[J]. Machine Learning, 2004,54(1) : 45-66.
  • 8张春雨,李斌,陈绵书,刘伟,蔡蕾,王琪.基于核空间的全局正交鉴别矢量集方法[J].吉林大学学报(工学版),2009,39(1):204-209. 被引量:1
  • 9Collobert R, Bengio S. SVMTorch: support vector machine for large-scale regression problems [ J ]. Journal of Machine Learning Research, 2001,1 (2) : 143-160.

二级参考文献34

  • 1宋枫溪,程科,杨静宇,刘树海.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(6):890-896. 被引量:58
  • 2杨国亮,王志良,王国江.面部表情识别研究进展[J].自动化技术与应用,2006,25(4):1-6. 被引量:10
  • 3Burges C. J. C.. A tutorial on support vector machines for pattern recognition, Knowledge Discovery and Data Mining,1998, 2(2): 121-167
  • 4边肇祺,张学工等.模式识别.北京:清华大学出版社,2000
  • 5Mika S, Ratsch G, Weston J, Scholkopf B, Muller K.R.. Fisher discriminant analysis with kernels. In: Proceedings of the IEEE International Workshop on Neural Networks for Signal Processing, Madison, USA, 1999, 41-48
  • 6Baudat G, Anouar F.. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12 (10) : 2385-2404
  • 7Lcc C, Landgrebe D. A.. Feature selection based on decision boundaries. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(1) : 388-400
  • 8Fransens R, Pris Jan De.. SVM based nonparametric discriminant analysis, an application to face detection. In: Proceedings of the 9th International Conference on Computer Vision, Nice, France, 2003, 1289-1296
  • 9Daugman J. G.. Face and gesture recognition: Overview.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 675-676
  • 10Belhumeur Peter N, Hespanha John P, Kriegman David J..Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720

共引文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部