期刊文献+

基于一维经验模态分解的图像细节提取方法 被引量:4

Extracting details from images based on 1-DEMD
下载PDF
导出
摘要 将一维经验模式分解方法直接应用于二维图像处理中,提出了基于一维经验模态分解图像细节提取方法。首先将二维图像按行或列展开为一维向量;然后用一维经验模态分解方法进行分解。为了有效地得到二维图像在水平方向和垂直方向的细节信息,提出了在进行一维经验模态分解过程中对残余图像交叉使用行和列展开的方式。最后通过实验证明了该方法的可行性和有效性。 A new algorithm based on the 1-Dimensional Empirical Mode Decomposition(1-DEMD) is developed to extract details from 2-dimensional images.First,the 2-dimensional image matrices must be previously transformed into 1-D image vectors according to the line or column of the image matrix;then the 1-DEMD can be used for decomposition.In order to achieve both vertical and horizontal details of the image,matrix-to-vector transform according to the line or column of the image matrix is cross-used by 1-DEMD.Experimental results validate the feasibility of the proposed method.
作者 林玉荣 王强
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第6期1766-1770,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60975009)
关键词 信息处理技术 一维经验模态分解 二维图像 细节提取 information processing 1-dimensional empirical mode decomposition 2-dimensional image extract details
  • 相关文献

参考文献11

  • 1Huang N E,Shen Z,Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear nonstationary time series analysis[J]. Proceedings of the Royal Society of London A, 1998,454 (12) :903-995.
  • 2Flandrin P, Rilling G, Goncalves P. Empirical mode decomposition as a filter bank[J] IEEE Signal Processing Letters,2004,11(2) :112-114.
  • 3王国光,王树勋,何丽桥.提取混沌中谐波信号的时频方法[J].吉林大学学报(工学版),2006,36(6):963-966. 被引量:3
  • 4He L L,Wang H Y. Spatial-variant image filtering based on hi-dimensional empirical mode decomposition[C]//The 18th International Conference on Pat- tern Recognition, Hong Kong, China, 2006: 1196-1199.
  • 5Nunes J C,Niang O,Bouanoune Y,et al. Texture analysis based on the bidimensional empirical mode decomposition with gray-level co-occurrence models [C]//Signal Processing and Its Applications (ISBN 0-7803-7946-2), Paris, France, 2003 : 633-635.
  • 6Anna L. 2-D empirical mode decompositions- in the spirit of image compression[J]. Proceeding of SPIE (S0277-786X), 2002,4738:1-8.
  • 7马乐,姜立标,李子超,余建伟.二维Hilbert-Huang变换及其在图像增强中的应用[J].哈尔滨工业大学学报,2009,41(7):93-96. 被引量:6
  • 8宋立新,高凤娇,郗朝晖.二维EMD分解方法的比较与改进[J].电子与信息学报,2008,30(12):2890-2893. 被引量:18
  • 9徐琼,李峰,吕回.二维EMD分解的数字图像压缩[J].计算机工程与应用,2009,45(5):180-182. 被引量:5
  • 10Turk M,Pentland A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991,3 (1) : 71- 86.

二级参考文献24

  • 1沈滨,崔峰,彭思龙.二维EMD的纹理分析及图像瞬时频率估计[J].计算机辅助设计与图形学学报,2005,17(10):2345-2352. 被引量:25
  • 2石敏,易清明,刘金梅.一种基于边缘检测的去块效应算法[J].计算机工程与应用,2007,43(8):27-28. 被引量:4
  • 3米兰,许海波.基于边缘提取的图像拼接[J].计算机应用研究,2007,24(5):318-320. 被引量:7
  • 4Christophe Damerval, Sylvain Meignen, and Valerie Perrier. A fast algorithm for bidimensional EMD [J]. IEEE Signal Processing Letters, 2005, 12(10): 701-704.
  • 5Linderhed A. 2D empirical mode decomposition in the spirit of image compression [J]. Wavelet and Independent Component Analysis Application Ⅸ, SPIE Processings. 2002, 4738: 1-8.
  • 6Nunes J C, Guyot S, and Del' echelle E. Texture analysis based on local analysis of the Bidimensional Empirical Mode Decomposition [J]. Machine Vision and Applications, 2005, 16: 177-188.
  • 7谢国瑞线性代数[M].上海:华东理工大学出版社,1996,第2章.
  • 8Huang N E, Zheng Shen, and Long S R, et al. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis [D]. Proc. R. Soc. London. Ser. A, 1998, 9454(1971): 903-995.
  • 9Huang N E and Zhaohua Wu. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc. Roy. Soc. London. A, 2004, 460: 1597-1611.
  • 10Nunes J C, Niang O, and Bouaoune Y, et al.. Bidimensional Empirical mode decomposition modified for texture analysis. Scandinavian Conference on Image Analysis [C]. SCIA, June 29-July 2, 2003: 171-177.

共引文献28

同被引文献48

  • 1段生全,贺振华,黄德济.HHT方法及其在地震信号处理中的应用[J].成都理工大学学报(自然科学版),2005,32(4):396-400. 被引量:40
  • 2Ming-YuShih, Din-Chang Tseng.A wavelet-based muhire solution edge detection and tracking[J].Image and Vision Computing,2005,23 (4) :442-451.
  • 3Tu CL,Hwang WL.Analysis of Singularities From Modulus Maxima of Complex Wavelets[J].IEEE Transactions on Information Theory, 2005,51:1049-1062.
  • 4Qinmu Pengl, Xinge You,Long Zhou, Yiu-ming Cheung.Retinal Blood Vessels Segmentation Using the Radial Projection and Supervised Classification.International Conference on Pattern Recognition,2010.
  • 5张晓宇,戴芳,甘明辉,等.经验模态分解的图像拼接[J].程图学学报,2011,1:59-66.
  • 6Huang N E. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R. Soc. Lond A. 1998, 454 (4):903-995.
  • 7Boudraa O A, Cexus C J. EMD-Based Signal Filtering. IEEE Transactions on Instrumentation and Measurement, 2007, 56(6):2196-2202.
  • 8Huang N E, Shen Z, Long R S. A new view of nonlinearwater waves: The Hilbert spectrum. Annu Rev. Fluid Mech, 1999,31:417-457.
  • 9Kizhner S, Flatley T S, Huang N E, et al. On the Hilbert-Huang Transform Data Processing System Development. IEEE Aerospace Conference Proceedings, 2004,3:1961-1979.
  • 10Daubechies I, Lu J F, Wu H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Applied and Computational Harmonic Analysis, 2011, 30:243-261.

引证文献4

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部