期刊文献+

基于改进的平方根中心差分卡尔曼滤波的单站无源定位算法 被引量:3

Improved central difference Kalman filter for single observer passive location
下载PDF
导出
摘要 针对单站无源定位可观测性弱、收敛速度慢、定位精度差等问题,推导出了一种带次优渐消因子的平方根中心差分卡尔曼滤波算法。在正交原理的约束下,通过引入自适应次优渐消因子实时调整增益矩阵,保证不同时刻残差序列相互正交,提高了滤波器对状态变化的反应速度和对有偏估计的自适应修正能力。同时,使用误差协方差的平方根替代协方差参与滤波,保证滤波算法的数值稳定性。仿真结果表明,新算法稳定性更好、收敛速度更快、定位精度更高。 A novel Suboptimal Fading Square Root Central Difference Kalman Filter(SFSRCDKF) algorithm is presented.This algorithm can enhance the observability,increase the convergence speed and improve the locating accuracy in the Single Observer Passive Location(SOPL).It uses adaptive suboptimal fading factor restricted by the orthogonality principle to real-time adjust the gain matrix,which can ensure the orthogonality of the new observation residuals at different time.Therefore,the response speed and the adaptive correction capability of the filter are improved when the state changes or the estimation is biased.The new filter also uses square root of the error covariance instead of the error covariance involved in filtering to ensure numerical stability.Simulation results show that,under different conditions,the new algorithm performs more stably with higher convergence speed and higher locating accuracy.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第6期1777-1782,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 '973'国家安全重大基础研究基金项目(61393010101-1) 国防基础科研基金项目(K1503060217)
关键词 信息处理技术 单站无源定位 次优渐消因子 中心差分卡尔曼滤波算法 残差序列 information processing technology single observer passive location adaptive suboptimal fading factor central difference Kalman filter observartion residuals
  • 相关文献

参考文献9

二级参考文献42

  • 1杨博,黄知涛,周一宇.基于空间非合作运动辐射源照射的目标定位研究[J].宇航学报,2008,29(1):224-228. 被引量:8
  • 2杨莘元,郑思海.基于运动辐射体TOA和DOA测量的单站被动定位算法[J].电子学报,1996,24(12):66-69. 被引量:37
  • 3JULIER S J, UHLMANN J K, DURRANT-WHYTE H F. A new approach for filtering nonlinear systems [ C ]//Proceedings of the 1995 American Control Conference. Seattle, WA : IEEE, 1995,3 : 1628-1632.
  • 4JULIER S J. The scaled unscented transformation [ C ]// Proceedings of the 2002 American Control Conference. Anchorage, Alaska, USA :IEEE, 2002,6:4555-4559.
  • 5ITO Kazufumi , XIANG Kai-qi. Gussion Filtering Problems[ J]. IEEE Transaction on Automatic Control, may 2000,45 ( 5 ) : 910 -927.
  • 6NΦRGARRD M, POULSEN N K, RAVN O. Advances in derivative-free estimation for nonlinear systems [ R ]// Technical Report IMM-REP1998-15 ( revised edition). Denmark: Technical University, Oct 29,2004.
  • 7NΦRGARRD M, POULSEN N K, RAVN O. New developments in state estimation for nolinear systems [ J ]. Automatica, 2000,36 ( 11 ) : 1627-1638.
  • 8RUDOLPH VAN DER MERWE. Sigma-point Kalman Filter for Probabilistic inference in Dynamic State-Space Models [ D ]. Portland, OR : OGI School of Science & En- gineering at Oregon Health & Science University, April, 2004.
  • 9周东华,控制与决策,1990年,5卷,1页
  • 10Howland P E.Target tracking using television-based bistatic radar[J].IEE Proc.~Radar.Sonar Navig,1999,146(3):166-174.

共引文献234

同被引文献32

  • 1金宏斌,戴凌燕,徐毓,彭焱.基于无味卡尔曼滤波的多雷达方位配准算法[J].数据采集与处理,2006,21(1):29-33. 被引量:5
  • 2Norgarrd M, Poulsen N, Ravn O. New develop- ments in state estimation for nonlinear systems[J]. Automatic, 2000, 36(11)..1627-1638.
  • 3Norgarrd M, Poulsen N, Ravn O. Advances in de- rivative-free state estimation for nonlinear system [R]. Technical Report IMM-REP 1998-15: Revised Edition. Denmark.. Technical University, 2004.
  • 4Ito K, Xiong K. Gaussian filters for nonlinear filte- ring problems [J] IEEE Transactions on Automatic Control, 2000, 45(5):910-927.
  • 5Rudolph V. Merwe D. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[D]. Portland: OGI School of Science : En- gineering, Oregon Health : Science University, 2004.
  • 6Crassidis J L, Markley F L. Unscented filtering for spacecraft attitude estimation [J] Journal of Guid- ance, Control and Dynamics, 2003, 26(4):536-542.
  • 7Farrenkopf R L. Analytic steady-state accuracy solu- tions for two common spacecraft attitude estimators [J] Journal of Guidance and Control, 1978, 1 (4): 282-284.
  • 8WANG Zhi, LUO Jian, ZHANG "~'iaoping. A now'' location-penalized maximum likeli~:~. ,t esti"aator fbl bearing-only target localization[J], lEEr : ~:Lttsactions on Signal Processing, 2012, 60(12): 6166-6181.
  • 9SHEN Junyang, Molisch A F, Salmi J. ate passive location estimation using TOA measurements[~ !:E Transactions on Wireless Communications, 2012, 11(6) ~ ' 2192~.
  • 10Amar A, Weiss J. i o~ .I ,--'!on of r nd re ~.;;~ b'~'~c1 on Doppler frequenc3 ! ift[.~cessing, 2008, 56(11): 5500--5508.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部