摘要
Many industrial processes such as heating furnaces have over damping dynamic characteristics. Based on an innovative impulse response model, a method of identification and control for the over damping plant is introduced in the paper. The number of parameters of the model is much less than conventional impulse response model. The model based on tuning procedure of numerical optimum PID controller parameters is presented. For an actual instance, a large scale airflow circulatory resistance furnace control system with cascades of time delays is developed. In the system, the optimum PID control is used in the inner loop. A nonlinear PI compensation control is applied in the outer loop. The coordinating control among each output is realized by a fuzzy control strategy. A process surveillance organization monitors running situation of system and tunes controller parameters.
Many industrial processes such as heating furnaces have over-damping dynamic characteristics. Based on an innovative impulse response model, a method of identification and control for the over-damping plant is introduced in the paper. The number of parameters of the model is much less than conventional impulse response model. The model based on tuning procedure of numerical optimum PID controller parameters is presented. For an actual instance, a large-scale airflow circulatory resistance furnace control system with cascades of time-delays is developed. In the system, the optimum PID control is used in the inner loop. A nonlinear PI compensation control is applied in the outer loop. The coordinating control among each output is realized by a fuzzy control strategy. A process surveillance organization monitors running situation of system and tunes controller parameters.