摘要
As an intriguing interdisciplinary research field, cell and molecular biomechanics is at the cutting edge of mechanics in general and biomechanics in particular. It has the potential to provide a quantitative understanding of how forces and deformation at tissue, cellular and molecular levels affect human health and disease. In this article, we review the recent advances in cell and molecular biomechanics, examine the available computational and experimental tools, and discuss important issues including protein deformation in mechanotransduction, cell deformation and constitutive behavior, cell adhesion and migration, and the associated models and theories. The opportunities and challenges in cell and molecular biomechanics are also discussed. We hope to provide readers a clear picture of the current status of this field, and to stimulate a broader interest in the applied mechanics community.
As an intriguing interdisciplinary research field, cell and molecular biomechanics is at the cutting edge of mechanics in general and biomechanics in particular. It has the potential to provide a quantitative understanding of how forces and deformation at tissue, cellular and molecular levels affect human health and disease. In this article, we review the recent advances in cell and molecular biomechanics, examine the available computational and experimental tools, and discuss important issues including protein deformation in mechanotransduction, cell deformation and constitutive behavior, cell adhesion and migration, and the associated models and theories. The opportunities and challenges in cell and molecular biomechanics are also discussed. We hope to provide readers a clear picture of the current status of this field, and to stimulate a broader interest in the applied mechanics community.
基金
supported by the National Heart,Lung,and Blood Institute,National Institutes of Health,as a Program of Excellence in Nanotechnology Award,N01 HV-08234,to Gang Bao
the support from the National Natural Science Foundation of China through Grant Nos.10872115,11025208 and 10732050