期刊文献+

THE NORMALITY OF CAYLEY GRAPHS OF SIMPLE GROUP A_5 WITH SMALL VALENCIES

THE NORMALITY OF CAYLEY GRAPHS OF SIMPLE GROUP A_5 WITH SMALL VALENCIES
原文传递
导出
摘要 1.IntroductionLetGbeafinitegroup.ForaCayleysubsetSofGnotcontainingtheidentityelement1,theCayley(di)graphX^Cay(G,S)ofGwithrespecttoSisdefinedasthedirectedgraphwithvertexsetV(X)=GandedgesetE(X)={(g,sg)IgEG,s6S}.IfS=S--',thentheadjacencyrelationissymmet... Let G be a finite group and S a subset of G not containing the identity element 1. We define the Cayley (di)graph X = Cay(G, S) of G with respect to S by V(X) = G, E(X) = {(g, sg) I g E G, s E S}. A Cayley (di)graph X = Cay(G, S) is called normal if GR d A = Ant(X). In this paper we prove that if S = {a, b, c} is a lgenerating subset of G = As not containing the idelltity 1, then X = Cay(G, S) is a normal Cayley digraph.
出处 《Systems Science and Mathematical Sciences》 SCIE EI CSCD 2000年第1期42-47,共6页
关键词 . CAYLEY GRAPH NORMAL CAYLEY (di)graph. . Cayley graph, normal Cayley (di)graph.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部