期刊文献+

Photographing of a Multi-Pellet Ablation Process in HL-1M Tokamak with CCD Camera

Photographing of a Multi-Pellet Ablation Process in HL-1M Tokamak with CCD Camera
下载PDF
导出
摘要 The 2D CCD camera has been used to take photos during hydrogen multi-pellet injection in HL-1M tokamak. The hydrogen multi-pellet (2 × 1.0 mm, 3× 1.2 mm, 3×1.2 ~ 1.3 mm) is horizontally injected into plasma. The observation is performed above the injection path at a sight angle 13.4°,As the shape of cloud ablation varies so quickly, the key points of the experiment have to be the high temporal resolution of CCD and the determination of pellet radial location in plasma. A series of improvements have been made with the experiment setup, including camera parameter, control (NA, ROI) and trigger mode, so as to satisfy the experiment requirements. Thus very nice photos along with the satisfying experimental results are obtained such as: (1) single exposure time reduced to 100 us (2) multi-frame in one discharge (FPS≥ 40) (3)multi-exposure for one pellet so that further observation of the temporal process of pellet ablation may be possible. Through the data analysis on the spatial distibution of pellet ablation clouds in photos taken, the pellet dimensions, trajectory of the cloud and pellet velocity are obtained, and the physical mechanism of pellet-plasma interactions also analyzed. In particular, it is possible to provide an effective means for measuring q-profile of HL-1M plasma. The 2D CCD camera has been used to take photos during hydrogen multi-pellet injection in HL-1M tokamak. The hydrogen multi-pellet (2 × 1.0 mm, 3× 1.2 mm, 3×1.2 ~ 1.3 mm) is horizontally injected into plasma. The observation is performed above the injection path at a sight angle 13.4°,As the shape of cloud ablation varies so quickly, the key points of the experiment have to be the high temporal resolution of CCD and the determination of pellet radial location in plasma. A series of improvements have been made with the experiment setup, including camera parameter, control (NA, ROI) and trigger mode, so as to satisfy the experiment requirements. Thus very nice photos along with the satisfying experimental results are obtained such as: (1) single exposure time reduced to 100 us (2) multi-frame in one discharge (FPS≥ 40) (3)multi-exposure for one pellet so that further observation of the temporal process of pellet ablation may be possible. Through the data analysis on the spatial distibution of pellet ablation clouds in photos taken, the pellet dimensions, trajectory of the cloud and pellet velocity are obtained, and the physical mechanism of pellet-plasma interactions also analyzed. In particular, it is possible to provide an effective means for measuring q-profile of HL-1M plasma.
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第1期95-103,共9页 等离子体科学和技术(英文版)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部