摘要
研究了一类复合不可微规划:minx∈RnF(x),其中F∶=hf,h:Rm→R是凸函数,f:Rn→Rm是C1,1函数.给出了其二阶最优性条件:(i)若F在z处取局部极小,则对d∈K(z),有maxy*∈M(z){dTAd|A∈2xxL(z,y*)}≥0;(i)若M(z)≠,且对d∈D(z),maxy*∈M(z){dTAd|A∈2xxL(z,y*)}>0。
The problems are studied: min x ∈R nF(x) ,where F∶=hf with h :R m→R is convex and F :R n→R m is C 1,1 function,and gives the second optimality conditions: (i) If F attains a local minimumat z . then max y ∈M(z) {d TAd|A∈ 2 xx L(z,y )} ≥0 whenever d∈ k(z) ;(ii) If z ∈R n is such that M(z) ≠ and max y ∈M(z){d TAd|A∈ 2 xx L(z,y ) }>0,for all D∈(z) ,then Z is an isolated local minimum for F. The results generalize the theory developed by J.V.Burke.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
1999年第S1期81-83,共3页
Journal of Shaanxi Normal University:Natural Science Edition
关键词
不可微规划
复合函数
二阶最优性条件
nondifferentiable programming
complex function
second optimality condition