摘要
该文对定义于局部凸线性拓扑空间X上的泛函引入广义方向导数、广义梯度及满足Lips-chitz条件等概念,证明了它们的几个重要性质,并举例说明这里满足Lipschitz条件的概念是Ba-nach空间情形的严格推广.最后,作为上述结论及方法的应用,讨论定义于X的多目标数学规划,得出若干关于弱有效解的最优性条件.
At first the author introduces the definitions of generalized directional derivative, generalized gradient, and satisfied Lipschitzian condition for functions defined in a locally convex linear topological space. And then, the author gives two examples to illustrate that their Lipschitzian condition is a strict generalization for the situation of Banach space. Finally the author discusses the multiobjective programming and attain some optimality sufficient conditions.
出处
《数学物理学报(A辑)》
CSCD
北大核心
1999年第S1期524-530,共7页
Acta Mathematica Scientia
关键词
局部凸线性拓补空间
广义方向导数
广义梯度
LIPSCHITZ条件
(弱)有效解
Locally convex linear topological space, Generalized directional derivative, Generalized gradient, Lipschitzian condition, (weak)efficient solution.