期刊文献+

局部凸空间上的泛函的非光滑分析及多目标规划

On Nonsmooth Analysis and Multiobjective Programming in A Locally Convex Linear Topological Space
下载PDF
导出
摘要 该文对定义于局部凸线性拓扑空间X上的泛函引入广义方向导数、广义梯度及满足Lips-chitz条件等概念,证明了它们的几个重要性质,并举例说明这里满足Lipschitz条件的概念是Ba-nach空间情形的严格推广.最后,作为上述结论及方法的应用,讨论定义于X的多目标数学规划,得出若干关于弱有效解的最优性条件. At first the author introduces the definitions of generalized directional derivative, generalized gradient, and satisfied Lipschitzian condition for functions defined in a locally convex linear topological space. And then, the author gives two examples to illustrate that their Lipschitzian condition is a strict generalization for the situation of Banach space. Finally the author discusses the multiobjective programming and attain some optimality sufficient conditions.
作者 曾韧英
出处 《数学物理学报(A辑)》 CSCD 北大核心 1999年第S1期524-530,共7页 Acta Mathematica Scientia
关键词 局部凸线性拓补空间 广义方向导数 广义梯度 LIPSCHITZ条件 (弱)有效解 Locally convex linear topological space, Generalized directional derivative, Generalized gradient, Lipschitzian condition, (weak)efficient solution.
  • 相关文献

参考文献3

  • 1陈光亚.Banach空间中向量极值问题的Lagrange定理及Kuhn-Tucker条件[J]系统科学与数学,1983(01).
  • 2Y. Tanaka. Note on generalized convex functions[J] 1990,Journal of Optimization Theory and Applications(2):345~349
  • 3C. Singh. Optimality conditions in multiobjective differentiable programming[J] 1987,Journal of Optimization Theory and Applications(1):115~123

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部